ПЛЕНКИ ДЛЯ ТЕРМОМАГНИТНОЙ ЗАПИСИ




 

Термомагнитный эффект

Магнитные свойства ферромагнетиков существенно зависят от температуры. Достаточно точно эта зависимость описывается законом Кюри-Вейса: µ=С/(ТК - Т), где С - некоторая константа (константа Кюри), зависящая от материала, ТК - температура (точка) Кюри. Закон обратной зависимости магнитной восприимчивости парамагнетиков от температуры установлен в 1895 г французским физиком П.Кюри. Позже, в 1907 г другой француз П.Вейс уточнил закон применительно к ферромагнетикам.

По закону Кюри-Вейса при Т, стремящимся к ТК, магнитная восприимчивость расходится (становится бесконечно большой). Это не должно смущать, поскольку Тк - особая точка. При температуре Кюри происходит переход вещества из парамагнитной фазы в ферромагнитную. При температуре ниже точки Кюри вещество является ферромагнетиком, выше - парамагнетиком. При приближении (снизу по температуре) магнитная восприимчивость µ резко возрастает. Этот процесс поясняется рис. 3.

По мере роста температуры возрастает крутизна наклонных участков петли гистерезиса (соответственно, и |i). При этом уменьшается коэрцитивная сила и максимальная остаточная намагниченность, а отношение ВНК растет. Все это ведет к резкому росту эффективности записи.

Естественно, эти особенности магнитных свойств ферромагнетиков вблизи точки Кюри заинтересовали изобретателей. Среди материалов, пригодных для записи на ленточный носитель, наименьшей температурой фазового перехода обладает диоксид хрома. Точка Кюри этого материала составляет 128 °С (у гамма-оксида железа, например, температура Кюри составляет 650 °С). Она достаточно велика, но тем не менее, в сочетании с точечным лазерным подогревом материала, гамма-оксид железа может применяться на практике. В качестве примера на рис. 4 приведена схема лазерного подогрева при термомагнитном тиражировании магнитных записей.

К барабану прижаты две ленты: снизу с носителем из гамма-диоксида железа - оригинал, сверху с диоксидом хрома - копия. Ленты соприкасаются рабочими слоями. Сфокусированный луч лазера разогревает рабочий слой ленты-копии до температуры немного выше точки Кюри. Температура разогретой точки (точнее штриха с длиной, равной ширине дорожки записи) достаточно быстро остывает за счет тепловой диффузии. При переходе через точку фазового перехода, когда магнитная восприимчивость сверхвысокая, рабочий слой ленты-копии легко намагничивается. При дальнейшем остывании магнитная восприимчивость быстро уменьшается и запись относительно слабых полей, создаваемых лентой-оригиналом, становится невозможной. В процессе транспортировки лент оригинала и копии зона записи перемещается. Скопированная сигналограмма зеркальна по отношению к сигналограмме оригинала. Поэтому запись оригинала ведется так, чтобы формировалась сигналограмма, зеркальная по отношению к стандартной. Скорость тиражирования прямо зависит от мощности лазера. Реально удалось реализовать тиражные машины со скоростями копирования в 300 и более раз выше номинальной.

Термомагнитиая запись также широко применяется в системах записи на магнитооптические диски. В этом случае зона мгновенной записи совпадает со световым пятном, разогревающим термо-магнитный материал. Магнитное поле при этом может быть рассеянным в области, значительно превышающей снеговое пятно, и должно быть достаточно слабым, чтобы нс воздействовать на неосвещенные участки.

 

Для создания конкретных технических устройств с термомагнит­ной записью в качестве материалов используют ферромагнитные и ферримагнитные пленки с разнообразными термомагнитными ха­рактеристиками. Под влиянием температуры в различных материа­лах может изменяться намагниченность, коэрцитивная сила, ани­зотропия и другие параметры.

Принято классифицировать магнитные материалы для тер­момагнитной записи по типу термомагнитного эффекта, который при этом используется.

 

Материалы для записи в точке Кюри. Их применение основано на использовании температурной зависимости спонтанной намагни­ченности вблизи точки Кюри 0.

Эта группа материалов состоит из металлических пленок с силь­ной перпендикулярной анизотропией, классическим представителем которой является маргапцево-впсмутовая пленка (MnBi), обеспечи­вающая плотность записи порядка 106 бит/см2.

Монокристаллические марганцево-висмутовые пленки изготав­ливают напылением на подложку из слюды слоев Bi и Мп, поверх которых для защиты пленки от разложения и для снижения потерь на отражение наносят слой SiO определенной толщины. Для полу­чения однородного слоя соединения MnBi эту многослойную струк­туру отжигают при Т = 300° в течение 70 ч в вакууме, в результате чего образуется пленка с низкотемпературной фазой (гексагональ­ной кристаллической структуры), причем ось легкого намагничива­ния ориентирована перпендикулярно подложке.

При локальном нагревании участка пленки выше точки Кюри (Т»360°С) происходит временная потеря намагниченности. Маг­нитное поле напряженностью 24 кА/м, приложенное перпендику­лярно поверхности пленки, обеспечивает полное перемагничивание этого локального участка при сохранении исходной намагниченно­сти других.

 

Материалы для записи в точке компенсации Тк. Их применение основано на использовании температурной зависимости коэрцитив­ной силы ферромагнетика вблизи точки компенсации.

Если нагреть ферромагнетик, состоящий из двух противопо­ложных по намагниченности магнитных подрешеток, до темпера­туры, равной точке компенсации, то наблюдается резкое возраста­ние анизотропии и коэрцитивной силы. Небольшое отклонение от Тк приводит к значительному падению Нс и уменьшению поля за­рождения доменов обратной намагниченности.

Группа этих материалов весьма многочисленна.

 

Материалы для записи в точке переориентации. Их применение основано на эффекте переориентации спинов под воздействием на­грева до определенной температуры слабых ферромагнетиков с низ­кой симметрией, что приводит к изменению направления оси лег­кого намагничивания, а следовательно, и к повороту вектора намаг­ниченности.

Перспективными материалами этой группы являются ортоферри-ты со значительной перпендикулярной анизотропией. В исходном состоянии век­тор намагниченности по всей пленке расположен перпендикулярно ее поверхности. Нагрев материала выше точки переориентации приводит к локальному развороту вектора намагничен­ности в плоскость пленки. После остывания под действием сильно­го поля анизотропии и небольшого поля записи этот вектор возвра­щается в исходное состояние, причем его направление на участке записи противоположно ориентации векторов намагниченности дру­гих участков пленки. Эти материалы позволяют осуществлять запись при комнатной температуре с высокой чувствительностью при достаточной надежности считывания.


СПИСОК ЛИТЕРАТУРЫ

1. Преображенский, Бишард. Магнитные материалы и элементы. 1986г.

2. журнал "Звукорежиссер" 6/2001, с. 3-9

3. www.phys.ru

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: