История вируса
В 80-е годы 19 века на юге России табачные плантации подверглись грозному нашествию. Отмирали верхушки растений, на листьях появлялись светлые пятна, год от года число пораженных полей увеличивалось, а причина заболеваний неизвестна.
В Бессарабию и Украину была направлена экспедиция, в которую входили Д.И. Ивановский.
В 1892 году Ивановский открыл новое царство живых существ.
На поиски возбудителей болезни Ивановский потратил несколько лет. Он собирал факты, делал наблюдения, расспрашивал крестьян о симптомах болезни, и экспериментировал. Опыты показали, что дело не в составляющих растения – корневой системе, семенах, пыльце или цветках: болезнетворное начало поражает растения иным путём. Тогда молодой учёный ставит простой опыт. Он собирает больные листья, измельчает их и закапывает на участках со здоровыми растениями. Через некоторое время растения заболевают. Итак, путь от больного растения к здоровому найден. Возбудитель передаётся листьями, попавшими в почву, перезимовывает и весной поражает посевы.
Но о самом возбудителе он так ничего и не узнал. Его опыты показали лишь одно, – нечто заразное содержится в соке.
Так Ивановский открыл новое царство живых организмов, самых мелких из всех живых и потому невидимых в световом микроскопе, проходящих сквозь тончайшие фильтры, сохраняющихся в соке годами и при этом не теряющих вирулентности.
Итак, как было выяснено, вирусы проходят через фильтры, задерживающие бактерии. Они не растут даже на самых сложных по составу питательных средах и развиваются только в живых организмах, что считалось основным критерием отличия развития вирусов от других микроорганизмов.
|
История бктериофага
В 1917 году канадский бактериолог Ф. Д’Эрелль независимо от Туорта сообщил об открытии вируса, «пожирающего» бактерий, — бактериофага [4]. Микробиологи того времени считали, что чума свиней вызывается совместным действием микроба и вируса. Д’Эрелль предположил, что схожая этиология и у дизентерии. С помощью свечей Шамберлана он отфильтровал фекалии больных дизентерией и добавил их в пробирки с культурами шигелл, намереваясь ввести смесь бактерий и предполагаемого вируса экспериментальным животным. Однако на следующие сутки он обнаружил, что бульон, в котором росли шигеллы, стал прозрачным, что свидетельствовало о гибели бактерий. Профильтровав бульон из этих пробирок, он снова заразил полученными фильтратами культуры шигелл. И вновь на следующие сутки он обнаружил, что бульон стал прозрачным. Полученное «литическое начало» можно было бесконечно пассировать от одной культуры к другой, что привело Д’Эрелля к мысли о существовании вируса, разрушающего бактерии.
Классификация Вируса
Классификация вируса по форме вириона:
1. Палочковидной формы. К ним относят вирус табачной мозаики
2. Пулевидной формы. Это вирус бешенства
3. Сферический. Вирус ВИЧ
4. Нитевидной. Это филовирусы
Классификация бактериофага
Классификация фага по морфологическим признакам
1. Это бактериофаг с сокращающимся отростком и двухцепочечной ДНК
2. Это бактериофаг с длинным несокращающимся отростком и двухцепочечной ДНК
3. Это фаг с коротким несокращающимся отростком и двухцепочечным ДНК
|
4. Без отростка с капсомерами и одноцепочечной ДНК
5. Без отростка и капсомеров и одноцепочечной РНК
6. Нитевидные с одноцепочечной ДНК
Строение вируса
Белковая оболочка
Генетический материал(ДНК или РНК)
Капсид
Белковые нити
Строение Бактериофага
Головка
1 нуклеиновая кислота(РНК или ДНК)
2 белковая оболочка
Хвостовой отросток
1 внутренний стержень
2 сократительный чехол
3 базальная пластинка
Фибриллы
Функции вируса
Вирусы вносят в клетку свою генетическую информацию, и клетка начинает производить подобные вирусы.
Жизненный цикл ВИРУСА
Вирусы не размножаются клеточным делением, поскольку не имеют клеточного строения. Вместо этого они используют ресурсы клетки-хозяина для образования множественных копий самих себя, и их сборка происходит внутри клетки.
Условно жизненный цикл вируса можно разбить на несколько взаимоперекрывающихся этапов (обычно выделяют 6 этапов[95]):
· Прикрепление представляет собой образование специфичной связи между белками вирусного капсида и рецепторами на поверхности клетки-хозяина.
· Проникновение в клетку. На следующем этапе вирусу необходимо доставить внутрь клетки свой генетический материал. Некоторые вирусы также переносят внутрь клетки собственные белки, необходимые для её реализации
- Лишение оболочек представляет собой процесс потери капсида. Это достигается при помощи вирусных ферментов или ферментов клетки-хозяина, а может быть и результатом простой диссоциации. В конечном счёте вирусная геномная нуклеиновая кислота освобождается.
·
|
Репликация вирусов подразумевает, прежде всего, репликацию генома
Вслед за этим происходит сборка вирусных частиц, позже происходят некоторые модификации белков.
Выход из клетки. Вирусы могут покинуть клетку после лизиса, процесса, в ходе которого клетка погибает из-за разрыва мембраны и клеточной стенки, если такая есть.
Размножение бактериофага
Умеренные и вирулентные бактериофаги на начальных этапах взаимодействия с бактериальной клеткой имеют одинаковый цикл.
· Адсорбция бактериофага на фагоспецифических рецепторах клетки.
· Инъекция фаговой нуклеиновой кислоты в клетку хозяина.
· Совместная репликация фаговой и бактериальной нуклеиновой кислоты.
· Деление клетки.
· Далее бактериофаг может развиваться по двум моделям: лизогенный либо литический путь.
Умеренные бактериофаги после деления клетки находятся в состоянии профага (Лизогенный путь).
Вирулентные бактериофаги развиваются по Литической модели:
· Нуклеиновая кислота фага направляет синтез ферментов фага, используя для этого белоксинтезирующий аппарат бактерии. Фаг тем или иным способом инактивирует ДНК и РНК хозяина, а ферменты фага совсем расщепляют её; РНК фага «подчиняет» себе клеточный аппарат синтеза белка.
· Нуклеиновая кислота фага реплицируется и направляет синтез новых белков оболочки. Образуются новые частицы фага в результате спонтанной самосборки белковой оболочки (капсид) вокруг фаговой нуклеиновой кислоты; под контролем РНК фага синтезируется лизоцим.
· Лизис клетки: клетка лопается под воздействием лизоцима; высвобождается около 200—1000 новых фагов; фаги инфицируют другие бактерии.