Вынужденными называются колебания, которые совершаются под действием внешней периодической силы.




Неинерциальная система отсчёта — система отсчёта, к которой не применим закон инерции и поэтому для согласования сил и ускорений, в которой приходится вводить фиктивные силы инерции. Всякая система отсчета, движущаяся с ускорением относительно инерциальной, является неинерциальной.

Первый закон Ньютона постулирует наличие такого явления, как инерция тел. Поэтому он также известен как Закон инерции. Инерция — это явление сохранения телом скорости движения (и по величине, и по направлению), когда на тело не действуют никакие силы.

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО). Современная формулировка В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.
Импульс (Количество движения) — векторная физическая величина, являющаяся мерой механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:

. Масса — скалярная физическая величина.

7) Сила — векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей.

Виды: сила всемирного тяготения, сила тяжести, архимедова сила

Сила упругости — сила упругого сопротивления тела внешней нагрузке. Является макроскопической реакцией межмолекулярного электромагнитного взаимодействия материала тела. Снижается при появлении нарушений микроструктуры тела — при появлении остаточной деформации тела. Направлена против внешней силы.

Сила трения — сила сопротивления относительному перемещению контактирующих поверхностей тел. Зависит от шероховатости и электромагнитной природы материалов контактирующих поверхностей. Сила трения чистых «зеркальных» поверхностей является макроскопическим проявлением их межмолекулярного взаимодействия. Вектор силы трения направлен противоположно вектору относительной скорости.

Сила сопротивления среды — сила, возникающая при движении твёрдого тела в жидкой или газообразной среде. Относится к диссипативным силам. Сила сопротивления имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Вектор силы сопротивления направлен противоположно вектору скорости.

Сила нормальной реакции опоры — упругая сила, действующая со стороны опоры и противодействующая внешней нагрузке.

Силы поверхностного натяжения — силы, возникающие на поверхности фазового раздела. Имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Сила натяжения направлена по касательной к поверхности раздела фаз; возникает вследствие нескомпенсированного притяжения молекул, находящихся на границе раздела фаз, молекулами, находящимися не на границе раздела фаз.

8) Закон сохранения импульса утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная. В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Центр масс, центр инерции, барицентр — (в механике) геометрическая точка, характеризующая движение тела или системы частиц как целого. Не следует путать с центром тяжести.

В механике Галилея—Ньютона из-за независимости массы от скорости импульс системы может быть выражен через скорость ее центра масс. Центром масс (или центром инерции) системы материальных точек называется воображаемая точка С, положение которой характеризует распределение массы этой системы. Т.е. импульс системы равен произведению массы системы на скорость её центра масс. Т.е. центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, приложенных к системе. В соответствии с формулой из закона сохранения энергии вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остаётся неподвижным.

9) Энергия — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие.

Механическая работа — это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины, направления силы (сил) и от перемещения точки (точек) тела или системы.

Мощность — физическая величина, равная в общем случае скорости изменения энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Кинетическая энергия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением.

В физике консервативные силы (потенциальные силы) — силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил). Отсюда следует определение: консервативные силы — такие силы, работа которых по любой замкнутой траектории равна 0. Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется.

Диссипативные силы — силы, при действии которых на механическую систему её полная механическая энергия убывает (то есть диссипирует), переходя в другие, немеханические формы энергии, например, в теплоту.

Потенциальная энергия — скалярная физическая величина, характеризующая способность некого тела (или материальной точки) совершать работу за счет своего нахождения в поле действия сил. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы.

10) В физике механическая энергия описывает сумму потенциальной и кинетической энергии, имеющихся в компонентах механической системы. Механическая энергия — это энергия, связанная с движением объекта или его положением, способность совершать механическую работу.

Закон сохранения энергии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

11) Неконсервативная система сил система сил силового поля, в пределах которого неприменим закон сохранения механической энергии вследствие перехода её в другие виды энергии(сила трения, сопротивления движению)

Энергия никогда не исчезает и не появляется вновь, она лишь переходит из одного вида в другой. В этом и заключается физическая сущность закона сохранения и превращения энергии — сущность неуничтожимости материи и ее движения.

12) Удар — толчок, кратковременное взаимодействие тел, при котором происходит перераспределение кинетической энергии. Часто носит разрушительный для взаимодействующих тел характер. В физике под ударом понимают такой тип взаимодействия движущихся тел, при котором временем взаимодействия можно пренебречь. Абсолютно упругий удар — модель соударения, при которой полная кинетическая энергия системы сохраняется. В классической механике при этом пренебрегают деформациями тел. Соответственно, считается, что энергия на деформации не теряется, а взаимодействие распространяется по всему телу мгновенно. Абсолютно неупругий удар — удар, в результате которого компоненты скоростей тел, нормальные площадке касания, становятся равными. Если удар был центральным (скорости были перпендикулярны касательной плоскости), то тела соединяются и продолжают дальнейшее своё движение как единое тело.

Восстановления коэффициент в теории удара, величина, зависящая от упругих свойств соударяющихся тел и определяющая, какая доля начальной относительной скорости этих тел восстанавливается к концу удара. Восстановления коэффициент характеризует потери механической энергии соударяющихся тел вследствие появления в них остаточных деформаций и их нагревания.

Математическая модель абсолютно упругого удара работает примерно следующим образом:

-. Есть в наличии два абсолютно твердых тела, которые сталкиваются

-. В точке контакта происходят упругие деформации. Кинетическая энергия движущихся тел мгновенно переходит в энергию деформации.

-. В следующий момент деформированные тела принимают свою прежнюю форму, а энергия деформации вновь переходит в кинетическую энергию.

-. Контакт тел прекращается и они продолжают движение.

Хорошая модель абсолютно неупругого удара — сталкивающиеся пластилиновые шарики.

13) Момент инерции — скалярная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы, формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

, где — полная масса тела.

14) Вращательное движение — вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной.

Кинетическая энергия тела К – это энергия тела, обусловлена его движением:

К=m*v^2/2. Теорема об изменение кинетической энергии: изменение кинетической энергии тела равно работе сил, вызывающих это изменение.

15) Имеется пять видов движения твердого тела:

- поступательное, если прямая, соединяющая любые две точки тела, перемещается, оставаясь параллельной своему начальному положению, например движение трамвая на прямом участке пути;

- вращательное, если все точки лежащие на некоторой прямой, называемой осью вращения, остаются неподвижными, например движение двери при открывании и закрывании;

- плоское, если все точки тела движутся в плоскостях, параллельных некоторой плоскости, неподвижной в рассматриваемой системе отсчета, например качение колеса на прямом участке пути;

- сферическое, если одна из точек тела остается все время неподвижной в рассматриваемой системе отсчета, например движение гироскопа с тремя степенями свободы в карданном подвесе;

- свободное, если нет перечисленных выше четырех ограничений, например движение свободного произвольного брошенного тела вблизи поверхности Земли.

16) Основной закон динамики МАТЕРИАЛЬНОЙ ТОЧКИ при вращательном движении можно сформулировать следующим образом: "Произведение момента инерции на угловое ускорение равно результирующему моменту сил, действующих на материальную точку:" M = I·e.
Основной закон динамики вращательного движения ТВЕРДОГО ТЕЛА относительно закрепленной точки можно сформулировать следующим образом: "Произведение момента инерции тела на его угловое ускорение равно суммарному моменту внешних сил, действующих на тело. Моменты сил и инерции берутся относительно оси (z), вокруг которой происходит вращение:" M(z) = I(z)·e.

-!

17) Момент импульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Закон сохранения момента импульса — один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.

18) Колебания — повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Свободными называются колебания, при которых тело, будучи выведенным из положения равновесия каким-нибудь внешним воздействием, в дальнейшем предоставлено самому себе. В этом случае колебания происходят только под действием внутренних сил системы.

Вынужденными называются колебания, которые совершаются под действием внешней периодической силы.

Простейшим видом колебаний являются гармонические колебания. Это такие движения, когда физические величины изменяются по закону синуса (или косинуса).

Гармонические колебания характеризуются периодом, частотой, циклической частотой, амплитудой, фазой, начальной фазой колебаний. Дифференциальное уравнение гармонических колебаний:

дважды продифференцируем его по времени:

Видно, что выполняется следующее соотношение:

19) Скорость колеблющегося тела также меняется по гармоническому закону. Период колебаний скорости такой же, как и период колебаний координаты. V(x)=x’= A*ω*sin(ω*t+φ0)=v(max)*sin(ω*t+φ0)

Смещение:

,

Ускорение:

A(x)=x’’=-ω^2*x.

Энергия гармонических колебаний:

,

кинетическая:

потенциальная:

20) Гармонический осциллятор (в классической механике) — система, которая при смещении из положения равновесия испытывает действие возвращающей силы F, пропорциональной смещению x (согласно закону Гука):

где k — коэффициент жёсткости системы.

Пружинный маятник — механическая система, состоящая из пружины с коэффициентом упругости (жёсткостью) k, один конец которой жёстко закреплён, а на втором находится груз массы m.

Бывает горизонтальным и вертикальным.

Физический маятник — осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

Математический маятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения.

Приведённая длина — это условная характеристика физического маятника. Она численно равна длине математического маятника, период которого равен периоду данного физического маятника. Приведённая длина вычисляется следующим образом:
- где I — момент инерции относительно точки подвеса, m — масса, a — расстояние от точки подвеса до центра масс.

21) Таким образом, тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой что и складываемые колебания. Амплитуда зависит от разности фаз.

В результате сложения колебаний мало отличающихся по частоте получаются колебания с периодически меняющейся амплитудой. Периодические изменения амплитуды колебания, возникающие при сложении двух гармонич. колебаний с близкими частотами, наз. биениями. Биения — явление, возникающее при наложении двух гармонических колебаний, близких по частоте, выражающееся в периодическом уменьшении и увеличении амплитуды суммарного сигнала. Биения модулируются по амплитуде.

22) Фигуры Лиссажу: Если частоты складываемых взаимно перпендикулярных колебаний различны, то замкнутая траектория результирующего колебания довольно сложна и называется фигурой Лиссажу.

Так как траектория результирующего колебания имеет форму эллипса, то такие колебания называются эллиптически поляризованными. Ориентация эллипса и размеры его осей зависят от амплитуд складываемых колебаний и разности фаз a.

23) Все реальные колебания являются затухающими. Энергия механических колебаний постепенно расходуется на работу против сил трения и амплитуда колебаний постепенно уменьшается (затухает). Логарифмический декремент затухания:

,β - коэффициент затухания. Добротность — характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.

Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания.

24) Вынужденные — колебания, протекающие в системе под влиянием внешнего периодического воздействия. Примеры: листья на деревьях, поднятие и опускание руки. При вынужденных колебаниях может возникнуть явление резонанса: резкое возрастание амплитуды колебаний при совпадении собственной частоты осциллятора и частоты внешнего воздействия.

Резонанс — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы. Увеличение амплитуды — это лишь следствие резонанса, а причина — совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: