Семинар «Эндогенные процессы Земли»




1. *Литосферные плиты (понятие, карта, дрейф материков сегодня и в истории Земли)

Литосферная плита — крупный малоподвижный участок земной коры, часть литосферы. Узкими и активными зонами, широтными разломами, литосфера разделена на блоки. Согласно теории тектоники плит, литосферные плиты ограничены зонами сейсмической, вулканической и тектонической активности — границами плиты. Границы плит бывают трёх типов: дивергентные, конвергентные и трансформные.

Существует два принципиально разных вида земной коры — кора континентальная и кора океаническая. Некоторые литосферные плиты сложены исключительно океанической корой (пример — крупнейшая тихоокеанская плита), другие состоят из блока континентальной коры, впаянного в кору океаническую.

Суммарная мощность (толщина литосферы) океанической литосферы меняется в пределах от 2—3 км в районе рифтовых зон океанов до 80—90 км вблизи континентальных окраин. Толщина континентальной литосферы достигает 200—220 км.

Литосферные плиты постоянно меняют свои очертания, они могут раскалываться в результате рифтинга и спаиваться, образуя единую плиту в результате коллизии. Литосферные плиты также могут тонуть в мантии планеты, достигая глубины внешнего ядра.

Дивергентные границы или границы раздвижения плит - Это границы между плитами, двигающимися в противоположные стороны. В рельефе Земли эти границы выражены рифтами, в них преобладают деформации растяжения, мощность коры пониженная, тепловой поток максимален, и происходит активный вулканизм. Если такая граница образуется на континенте, то формируется континентальный рифт, который в дальнейшем может превратиться в океанический бассейн с океаническим рифтом в центре. В океанических рифтах в результате спрединга формируется новая океаническая кора.

Конвергентными называются границы, на которых происходит столкновение плит. Возможно три варианта:

1. Континентальная плита с океанической. Океаническая кора плотнее, чем континентальная, и погружается под континент в зоне субдукции.

2. Океаническая плита с океанической. В таком случае одна из плит заползает под другую и также формируется зона субдукции, над которой образуется островная дуга.

3. Континентальная плита с континентальной. Происходит коллизия, возникает мощная складчатая область. Классический пример — Гималаи.

В редких случаях происходит надвигание океанической коры на континентальную — обдукция. Благодаря этому процессу возникли офиолиты Кипра, Новой Каледонии, Омана и другие.

Трансформные границы - Там, где плиты двигаются параллельным курсом, но с разной скоростью, возникают трансформные разломы — грандиозные сдвиговые нарушения, широко распространённые в океанах и редкие на континентах.

 

Восстановление прошлых перемещений плит — один из основных предметов геологических исследований. С различной степенью детальности положение континентов и блоков, из которых они сформировались, реконструировано вплоть до архея.

Из анализа перемещений континентов было сделано эмпирическое наблюдение, что континенты каждые 400—600 млн лет собираются в огромный материк, содержащий в себе почти всю континентальную кору — суперконтинент. Современные континенты образовались 200—150 млн лет назад, в результате раскола суперконтинента Пангеи. Сейчас континенты находятся на этапе почти максимального разъединения. Атлантический океан расширяется, а Тихий океан закрывается. Индостан движется на север и сминает Евразийскую плиту, но, видимо, ресурс этого движения уже почти исчерпан, и в скором геологическом времени в Индийском океане возникнет новая зона субдукции, в которой океаническая кора Индийского океана будет поглощаться под Индийский континент.

Первую научную теорию медленного дрейфа материков сформулировал немецкий метеоролог и геолог Альфред Вегенер. В 1912 он указал на многочисленные сходства в геологическом строении континентов, а также на общность ископаемой флоры и фауны в геологическом прошлом. Веским доказательством было также совпадение климата в отдаленных эпохах.

Вегенер утверждал, что сначала на поверхности Земли возник тонкий слой гранитных пород. Со временем гранитные глыбы сконцентрировались в один большой праконтинент — Пангею, что произошло около 570—280 млн лет назад. Тогда же образовался праокеан, который окружал эту сушу. Затем Пангея раскололась и продолжала распадаться на более мелкие части. Эта революционная для тех лет теория достаточно просто объясняла многие непонятные геологические факты.

Механизм движения континентов Вегенер обосновал действием центробежных сил в результате вращения Земли и взаимным притяжением Земли, Солнца и Луны. Таким образом он объяснял отдаление Северной Америки от Европы и Африки, возникновение Атлантического океана, а также интенсивное образование грандиозных складчатых горных цепей Кордильер и Анд во фронтальной части обоих американских материков, надвигающихся на тихоокеанскую платформу. Дрейфование континентов от полюсов в направлении экватора, вызванное вращательным движением Земли, привело к столкновению Европы и Африки, в результате чего в Африке образовались Атласские горы, а в Европе — Альпы, Карпаты, Динарское нагорье и другие горные цепи. Появление Гималаев в свою очередь было результатом столкновения Деканского нагорья с Азией. Эти молодые горные цепи возникли в результате медленного движения континентов почти перпендикулярно к общепризнанным по Вегенеру направлениям дрейфа. Более старые горные цепи ориентированы в иных направлениях, которые Вегенер объяснял другим в то время местоположением как полюсов, так и оси вращения Земли, от которых зависело направление дрейфа.

2. *Тектонические движения литосферных плит (эпейрогенические, орогенические).

Тектоника плит — современное научное представление о строении и движении литосферы, согласно которому земная кора состоит из относительно целостных блоков — литосферных плит, которые находятся в постоянном движении относительно друг друга. При этом в зонах расширения (срединно-океанических хребтах и континентальных рифтах) в результате спрединга образуется новая океаническая кора, а старая поглощается в зонах субдукции. Теория тектоники плит объясняет возникновение землетрясений, вулканическую деятельность и процессы горообразования, по большей части приуроченные к границам плит.

Причины движений в разных частях Земли и на разных её уровнях различны:

· тектономагматические процессы структурных и вещественных преобразований и течения вещества на разных уровнях мантии и земной коры, которые прямо или опосредованно воздействуют на верхнекоровые слои, вызывая их поднятия, опускания и другие дислокации;

· латеральные движения литосферных плит, которые воздействуют друг на друга, вызывая более или менее крупномасштабные деформации земной коры;

· неравномерное вращение земного шара, возможно дифференцированное в разных оболочках и ядре Земли, в поле сил тяготения Луны и Солнца.

По преобладающей направленности тектонические движения земной коры разделяются на вертикальные (или радиальные, относительно земной сферы) и горизонтальные (тангенциальные), колебательные и направленные (с отчетливо выраженным в геологическом времени трендом).

Американский геолог Г. Джильберт предложил (1890), а немецкий геолог Х. Штилле развил (1919) классификацию Т. д. с разделением их на эпейрогенические, выражающиеся в длительных поднятиях и опусканиях крупных участков земной поверхности, и орогенические, проявляющиеся эпизодически (орогенические фазы) в определённых зонах образованием складок и разрывов и ведущие к формированию горных сооружений

Эпейрогенические (эпейрогенез) — медленные вековые поднятия и (или) опускания обширных площадей, не вызывающие изменения их структуры (складчатой).

Они являются:

· преимущественно вертикальными, глубинными, проявление их не сопровождается резким изменением первоначального залегания горных пород;

· эпейрогенические движения были повсюду и во все времена геологической истории;

· их происхождение объясняется гравитационной дифференциацией вещества в Земле: восходящим токам вещества отвечают поднятия земной коры, нисходящим – опускания;

· скорость и знак (поднятие – опускание) колебательных движений меняются и в пространстве, и во времени;

· в их последовательности наблюдается цикличность с интервалами от многих миллионов лет до нескольких тысяч столетий.

Орогенические (орогенез) - движения, создающие горы, в противоположность эпейрогеническим движениям, создающим континенты и плато, а также океанские и континентальные бассейны.

Орогенез происходит из-за сближения тектонических плит. Это может принимать форму субдукции или столкновения континентов. Орогенез обычно создает орогенные пояса, которые представляют собой удлиненные области деформации, граничащие с континентальными кратонами.

Орогенные пояса связаны с зонами субдукции, которые поглощают кору, утолщают литосферу, вызывают землетрясения и вулканы и часто создают островные дуги. Эти островные дуги могут быть добавлены к континентальной окраине во время аккреционной орогении. Кульминацией орогенеза может стать появление континентальной коры с противоположной стороны погружающейся океанической плиты в зону субдукции. Это заканчивает субдукцию и трансформирует аккреционную орогенезу в коллизионную орогенез. Коллизионный орогенез может образовать чрезвычайно высокие горы, как это имело место в Гималаях последние 65 миллионов лет.

3. *Вулканы (общая характеристика, типы вулканов, Тихоокеанское огненное кольцо, примеры самых крупных извержений вулканов).

Вулканы - это геологические образования, возникающие в земной коре над каналами или трещинами, по которым из недр земли извергаются огненно – жидкие лавы, обломки раскаленных горных пород, пепел, горячие газы, пары. В общем виде под вулканом принято понимать конусовидную гору с несколько усеченной вершиной.

Строение вулкана. На вершине такой горы находится чашеобразное углубление (кратер). Последний соединяется с поводящим каналом (жерлом). Самое главное в вулкане не гора, которая может образоваться и не образоваться над вулканическим выходом, а самый выход, или жерло, откуда из глубины выходят вулканические продукты: пар, газы, пепел и лава. Газы, вырывающиеся из вулкана, выбрасывают рыхлый материал, который падает вокруг выхода, тут же выливается и лава; вот эти–то рыхлые материалы с лавой, нагромождаясь у выхода, и образуют постепенно гору. Это наиболее распространенная, но не единственная форма вулканов.

 

 

Форма вулкана зависит от состава извергаемой им лавы; обычно рассматривают пять типов вулканов:

· Щитовидные (щитовые) вулканы. Образуются в результате многократных выбросов жидкой лавы. Эта форма характерна для вулканов, извергающих базальтовую лаву низкой вязкости: она длительное время вытекает как из центрального жерла, так и из боковых кратеров вулкана. Лава равномерно растекается на многие километры; постепенно из этих наслоений формируется широкий «щит» с пологими краями. Пример — вулкан Мауна-Лоа на Гавайях, где лава стекает прямо в океан; его высота от подножия на дне океана составляет примерно десять километров (при этом подводное основание вулкана имеет длину 120 км и ширину 50 км).

· Шлаковые конусы. При извержении таких вулканов крупные фрагменты пористых шлаков нагромождаются вокруг кратера слоями в форме конуса, а мелкие фрагменты формируют у подножия покатые склоны; с каждым извержением вулкан становится всё выше. Это самый распространённый тип вулканов на суше. В высоту они не больше нескольких сотен метров. Часто шлаковые конусы формируются как побочные конусы крупного вулкана, либо в качестве отдельных центров эруптивной активности при трещинных извержениях. Пример — несколько групп шлаковых конусов появились при последних извержениях вулкана Плоский Толбачик на Камчатке в 1975-76 и в 2012-2013 гг.

· Стратовулканы, или «слоистые вулканы». Периодически извергают лаву (вязкую и густую, быстро застывающую) и пирокластическое вещество — смесь горячего газа, пепла и раскалённых камней; в результате отложения на их конусе (остром, с вогнутыми склонами) чередуются. Лава таких вулканов вытекает также из трещин, застывая на склонах в виде ребристых коридоров, которые служат опорой вулкана. Примеры — Этна, Везувий, Фудзияма.

· Купольные вулканы. Образуются, когда вязкая гранитная магма, поднимаясь из недр вулкана, не может стечь по склонам и застывает вверху, образуя купол. Она закупоривает его жерло, как пробка, которую со временем вышибают накопившиеся под куполом газы. Такой купол формируется сейчас над кратером вулкана Сент-Хеленс на северо-западе США, образовавшегося при извержении 1980 г.

· Сложные (смешанные, составные) вулканы.

Тихоокеанское огненное кольцо - область по периметру Тихого океана, в которой находится большинство действующих вулканов и происходит множество землетрясений. Всего в этой зоне насчитывается 328 действующих наземных вулканов из 540 известных на Земле.

На западном побережье Тихого океана вулканическая цепь тянется от полуострова Камчатка через Курильские, Японские, Филиппинские острова, остров Новая Гвинея, Соломоновы острова и Новую Зеландию до Антарктиды. Восточная часть кольца включает вулканы северо-восточной Антарктиды, островов Огненной Земли, Анд, Кордильер и Алеутских островов.

В Тихом океане находится несколько зон спрединга (разрастания) океанической литосферы, главная из которых — Восточно-Тихоокеанская зона (включает в себя подводные литосферные плиты Кокос и Наска). По периферии океана происходит субдукция этих плит под обрамляющие континенты. Над каждой зоной субдукции протянулась цепочка вулканов, все вместе они и образуют Тихоокеанское кольцо. Однако это кольцо неполное, оно прерывается там, где нет субдукции — от Новой Зеландии и вдоль антарктического побережья. Кроме того, ни субдукции, ни вулканизма нет на двух отрезках побережья Северной Америки: вдоль полуострова и штата Калифорния (более 2000 км) и к северу от острова Ванкувер (почти 1500 км).

В Тихоокеанском огненном кольце произошли около 90 % всех мировых землетрясений и 80 % самых мощных из них. Следующая по мощности сейсмическая зона (5—6 % землетрясений и 17 % самых мощных землетрясений мира) — это Средиземноморский складчатый пояс, который начинается около Явы и Суматры, идёт через Гималаи, Средиземноморье и заканчивается в Атлантическом океане. Срединно-Атлантический хребет — третья по мощности зона землетрясений.

Примеры самых крупных извержений вулканов:

Везувий, 24−25 августа 79 г. н. э.

Одно из самых известных извержений в истории привело к гибели не только Помпеи, но и ещё трёх римских городов — Геркуланума, Оплонтия и Стабии.

Вулкан Этна, 1669 год

Вулкан Этна на острове Сицилия — самый высокий действующий вулкан на территории Европы — извергался больше 200 раз, раз в 150 лет разрушая какое-либо поселение.

Вулкан Тамбора, 1815 год

Тамбора расположен на индонезийском острове Сумбава, однако извержение этого вулкана заставило голодать людей по всему миру. Извержение Тамбора настолько сильно повлияло на климат, что после него настал так называемый «год без лета». Само извержение закончилось тем, что вулкан буквально взорвался: 4-х километровый гигант в один момент разлетелся на части, выбросив в воздух чуть ли не 2 миллиона тонн обломков и потопив вместе с тем сам остров Сумбава.

Вулкан Мон-Пеле, 1902 год

Рано утром 8 мая Мон-Пеле буквально разорвался на части — 4 сильнейших взрыва разрушили каменного гиганта. Огненная лава понеслась по склонам по направлению к одному из главных портов острова Мартиника.

Вулкан Руис, 1985 год

Руис уже давно считали потухшим вулканом, однако в 1985 году он напомнил о себе колумбийцам. 13 ноября один за другим прозвучало несколько взрывов, сильнейший из которых специалисты оценили примерно в 10 мегатонн. Столб пепла и горной породы поднялся на высоту восьми километров. Наибольшие разрушения извержение нанесло расположенному в 50 километрах от вулкана городу Армеро, который прекратил своё существование в течение 10 минут.

4. *Землетрясения (общая характеристика, распространение, типы землетрясений, регистрация, афтершоки, шкалы оценки силы землетрясений, примеры самых сильных землетрясений).

Землетрясение − подземные толчки и колебания земной поверхности, передающиеся на большие расстояния в виде упругих колебаний, возникающие в результате разрывов в земной коре или верхней части мантии земли и внезапных смещений пород. Землетрясение может быть вызвано естественно-природными процессами (тектоническими, вулканическими) или искусственными (взрывы, заполнение водохранилищ, обрушение подземных полостей горных выработок).

Очаг землетрясения − область возникновения подземного удара − представляет собой некоторый объем в толще земли, в пределах которого и происходит процесс высвобождения накапливающейся длительное время энергии. Размеры очага землетрясения могут быть от нескольких десятков метров до сотен километров.

Распространение на земном шаре землетрясений носит крайне неравномерный характер. Одни места характеризуются высокой сейсмичностью, а другие — практически асейсмичны. Зоны концентрации эпицентров представляют собой протяженные пояса вокруг Тихого океана и в пределах Альпийско-Гималайского складчатого пояса, простирающегося в широтном направлении от Гибралтара через Альпы, Динариды, Кавказ, Иранское нагорье в Гималаи. Гораздо более узкие и слабее выраженные пояса сейсмичности совпадают с осевыми зонами срединно-океанских хребтов. Короткие зоны сейсмичности известны и в пределах Восточной Африки, и в южной части Северо-Американской платформы. Все остальные древние платформы и абиссальные котловины океанов асейсмичны.Закономерное распространение землетрясений хорошо объясняется в рамках современной теории тектоники литосферных плит. Наибольшее количество землетрясений связано с конвергентными и дивергентными границами литосферных плит и поясами их коллизии. Высокосейсмичный пояс вокруг Тихого океана связан с погружением, субдукцией холодных и тяжелых океанских плит под более легкие, континентальные. Места перегиба океанических плит маркируются глубоководными желобами, за которыми располагаются островные дуги типа Алеутской, Курильской, Японской и др. с активным современным вулканизмом и окраинные моря или только вулканические пояса, как, например, в Южной и Центральной Америке. Возникновение сколов в верхней части погружающейся плиты свидетельствует о напряжениях, действующих в направлении пододвигания. Об этом говорит решение фокальных механизмов многочисленных землетрясений. По мере углубления океанической плиты, там, где она пересекает маловязкую астеносферу, гипоцентров становится меньше и они располагаются внутри плиты. Таким образом, погружающаяся плита, испытывая сопротивление, подвергается воздействию напряжений, разрядка которых приводит к образованию землетрясений, многочисленные гипоцентры которых сливаются в единую наклонную зону, достигающую в редких случаях глубины 700 км, т. е. границы верхней и нижней мантий.

Наклонные, уходящие под континенты самые мощные в мире скопления очагов землетрясений, называются зонами Беньофа.

Регистрация землетрясений - запись с помощью различных типов аппаратуры колебаний земной поверхности, обусловленных прохождением сейсмических волн, вызванных землетрясением.

Ежегодно на Земле регистрируется несколько сотен тысяч землетрясений, часть из них оказываются разрушительными, часть вообще не ощущается людьми. Интенсивность землетрясений может быть оценена с двух позиций: 1) внешнего эффекта землетрясения и 2) измерения физического параметра землетрясения – магнитуды.

Определение внешнего эффекта землетрясения основано на определении его интенсивности, представляющей собой меру величины сотрясения грунта. Она определяется степенью разрушения построек, характером изменения земной поверхности и ощущениями, которые испытывают люди во время землетрясений. Интенсивность землетрясений измеряется в баллах. Шкала Рихтера: в соответствии с этой шкалой землетрясения подразделяются на слабые - от 1 до 4 баллов, сильные - от 5 до 7 баллов и сильнейшие - более 8 баллов.

Магнитуда - это величина, представляющая собой десятичный логарифм максимальной амплитуды сейсмической волны (в тысячных долях миллиметра), записанной стандартным сейсмографом на расстоянии 100 км от эпицентра землетрясения.

Афтершок или повторный толчок, — толчок, происходящий после основного и меньший по сравнению с ним. Сильные землетрясения всегда сопровождаются многочисленными повторными толчками. Их количество и интенсивность со временем уменьшаются, а продолжительность проявления может длиться месяцами.

Наличие афтершоков связано не столько с остаточными напряжениями непосредственно в очаге, сколько с быстрым увеличением напряжения в окрестностях очага случившегося землетрясения из-за перераспределения напряжений. Во время главного удара землетрясения — пластической деформации пород земной коры в очаге землетрясения жёсткая плита земной коры сдвигается как целое на десятки сантиметров или даже на метры. При этом механические напряжения в очаге уменьшаются от максимальных до минимальных остаточных. Зато напряжение в окрестностях очага существенно увеличивается, иногда приближая это напряжение к самому пределу прочности. При превышении предела прочности и происходят повторные толчки.

Форшок (англ. Foreshock) — англицизм, означающий землетрясение, произошедшее до более сильного землетрясения и связанное с ним примерно общим временем и местом. Обозначение форшоков, основного землетрясения и повторных толчков (афтершоков) возможно только после всех этих событий.

Самым серьезным землетрясением в истории человечества считается серия подземных толчков, произошедших у берегов Японии 11 мая 2011 года. Самый сильный из них, магнитудой 9, зарегистрированный на глубине 30 км в 72 км от побережья архипелага, продолжался около 6 минут и вызвал цунами высотой более 40 метров.

Второе по масштабам разрушения землетрясение также произошло в Японии, находящейся в одном из наиболее сейсмоопасных регионов мира. Рано утром 17 января 1995 г. в в окрестностях города Кобе на юге страны был зарегистрирован подземный толчок магнитудой 6,9. Сравнительно небольшая глубина эпицентра — всего 16 км - стала причиной значительных разрушений.

Третье по разрушительности землетрясение также случилось в Азиатско-Тихоокеанском регионе — в Китае. В ночь на 12 мая 2008 г. подземный толчок магнитудой 8 произошел в центральной провинции Сычуань на глубине 19 километров.

Четвертую строчку списка занимает землетрясение, произошедшее в 4:31 утра 17 января 1994 г. в пригороде Лос-Анджелеса, штат Калифорния. Несмотря на то, что магнитуда толчка с эпицентром на глубине 19 км составила "всего" 6,7, тряску ощутили не только в на побережье США, но и в Лас-Вегасе, расположенном более чем в 350 км от Лос-Анжелеса.

Пятое по размерам ущерба землетрясение произошло 27 февраля 2010 г. в Чили. Подземный толчок магнитудой 8,8, зарегистрированный на глубине 30-35 км в трех километрах от побережья, ощущался 80% населения страны. Воздействие основного толчка и афтершоков усугубило вызванное ими цунами высотой более двух метров, серьезно повредившее порт Талькауано в центре страны.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-12-05 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: