Показатели оценивались в условных единицах от 0 до 1 исходя из следующих данных. Надежность радиосвязи с ПО в системах спутниковой, транкинговой и дуплексной поездной радиосвязи составляет 0,9. В системе ремонтно-оперативной радиосвязи (РОРС) надежность связи определяется как произведение надежностей связи (р1.р2.р3), отражающих соответственно сезонные, суточные и интерференционные замирания радиосигнала в канале связи. Таким образом, показатель надежности связи в канале РОРС составляет 0,73.
Надежность радиосвязи в аварийных ситуациях для спутниковой и транкинговой радиотелефонной систем связи полностью определяется эксплуатационной надежностью радиосвязи. Для канала дуплексной поездной радиосвязи она снижается до уровня 0,5 вследствие необходимости дополнительной ручной коммутации, а для канала РОРС определяется существующими нормами на качество связи.
Показатели качества определяются так же, как и в случае определения надежности радиосвязи с ПО. Показатели организации технологической связи (ПРС и СРС) на базе системы спутниковой связи объясняются сложностями в оснащении подвижных единиц мобильными радиостанциями и обеспечении непрерывности канала связи. Система транкинговой связи, а также РОРС позволяют избежать различные организационные и технические трудности при обеспечении железнодорожного транспорта каналами радиосвязи.
Возможность оперативного руководства объектами железнодорожного транспорта с подвижного объекта по каналам спутниковой и транкинговой радиотелефонной систем связи обусловлена существующими нормами качества каналов связи. Трудностей в организации такого вида связи нет. Каналы связи дуплексной поездной радиосвязи для этих целей не предназначены. В соответствии с назначением существующая РОРС не обеспечивает данный вид связи.
|
Организация пассажирской радиотелефонной связи из движущегося поезда по каналам спутниковой системы не имеет никаких ограничений. Транкинговая система обеспечивает данный вид связи только в зоне обслуживания. Системы дуплексной диспетчерской поездной радиосвязи и РОРС не предусматривают возможность автоматического выхода в междугородные и международные телефонные сети, поэтому показатели 7 и 8 (табл. 1) равны 0.
Организация пассажирской радиотелефонной связи на железнодорожных вокзалах на базе спутниковой системы не вызывает никаких технических и организационных проблем (стационарная земная станция не требует никакого дополнительного коммутационного оборудования), на базе же транкинговой системы она зависит от степени распространения данного вида связи на территории железнодорожных станций.
Показатели сохранности особо ценных грузов во время их транспортировки к месту назначения при организации системы охранной радиосигнализации посредством систем спутниковой, транкинговой радиотелефонной связи и РОРС определены качественными показателями надежности каналов связи, а с помощью каналов дуплексной поездной радиосвязи - функциональными возможностями системы.
Показатель капитальных вложений при организации оперативно-технологической и пассажирской радиосвязи на базе спутниковой системы определяется из расчета оснащения десяти фирменных поездов абонентскими мобильными станциями при условии аренды каналов существующих ССС с учетом данных, взятых из [3] и прайс-листов коммерческих предложений по аппаратуре и услугам международной системы спутниковой связи "ИНМАРСАТ" (0,4 млн. USD). На базе же транкинговой системы связи он определяется из ориентировочной стоимости ее строительства на заданной территории обслуживания согласно данным, полученным из прайс-листов коммерческих пред ложений по аппаратуре и услугам фирм НЕДА-ПЕЙДЖИНГ, North-West GSM, AEG, DELTA-TELECOM (2,3 млн. USD).
|
Показатель эксплуатационных расходов определялся на основе данных, приведенных в [3-5] и прайс-листах коммерческих предложений по аппаратуре и услугам международной системы спутниковой связи "ИНМАРСАТ", а также фирм НЕДА-ПЕЙДЖИНГ, North-West GSM, AEG, DELTA-TELECOM.
Показатель срока строительства и развертывания оборудования средств связи ССС определяется на основе данных, взятых из [3] и прайс-листов коммерческих предложений по аппаратуре и услугам международной системы спутниковой связи "ИНМАРСАТ" при условии аренды каналов, из расчета оборудования штабных вагонов десяти фирменных поездов (1 мес). Этот показатель для транкинговой системы связи определяется на основе данных, полученных из прайс-листов коммерческих предложений по аппаратуре и услугам фирм НЕДА-ПЕЙДЖИНГ, North-West GSM, DELTA-TELECOM (24 мес), а для систем ПРС и РОРС - согласно используемым на железнодорожном транспорте нормативам.
Результаты сравнительного анализа базовых вариантов систем радиосвязи приведены в табл. 1.
Показатели | Базовые варианты | ||
Спутниковая система связи | Транкинговая система связи | РОРС | |
Надежность радиосвязи с ПО | 0,9 | 0,9 | 0,73 |
Надежность радиосвязи в аварийных ситуациях | 0,9 | 0,9 | 0,9 |
Качество радиосвязи | 0,9 | 0,9 | 0,73 |
Возможность оперативного руководства с ПО | 0,9 | 0,9 | 0,3 |
Возможность организации пассажирской радиотелефонной связи с ПО | |||
Возможность организации радиотелефонной связи на вокзалах | 0,9 | ||
Капитальные вложения | 0,15 | 0,3 | |
Эксплуатационные расходы | 0,1 | 0,8 | |
Срок строительства или развертывания оборудования связи | 0,05 | 0,01 |
|
В соответствии с изложенными доводами описание любого базового варианта (стратегии) организации оперативно-технологической и пассажирской радиосвязи может быть составлено с помощью пяти укрупненных параметров. К ним относятся: Х1 - универсальность применения данной системы связи; Х2 - обеспечиваемость качества и надежности связи; Х3 - капитальные вложения; Х4 - эксплуатационные расходы; Х5 - срок строительства и резервирования данной системы связи.
Рассмотрим четыре основные стратегии организации оперативно-технологической и пассажирской радиосвязи, характеризуемые нормированными параметрами Zi (где i=1, 2, 3, 4). Нормировка выполняется по правилам:
Zi=Xi/Ximax - для параметров, возрастание численных значений которых приводит к повышению эффективности стратегии;
Zi=(Ximax-Xi)/Xi - для параметров, возрастание численных значений которых приводит к снижению эффективности стратегии.
Таким образом, 0 Для оценки стратегий Sj(p) применена программа моделирования ASPID-3, которая вычисляет функции следующего вида:
где Pi - весовые коэффициенты;
В программе предусмотрена возможность задания предпочтений между весовыми коэффициентами. Эта процедура в рассматриваемой задаче осуществляется исходя из того, что в базовых вариантах организации систем наиболее важными звеньями являются качество связи и эксплуатационные расходы.
Полученные результаты позволяют сделать следующие выводы:
1. Транкинговые системы радиосвязи, занимающие первую позицию в матрице предпочтения базовых вариантов, могут быть использованы для организации служебной и пассажирской радиосвязи на железнодорожном транспорте при условии интеграции с системой подвижной радиосвязи автомобильного транспорта. Только в этом случае могут быть оправданы (с учетом последующей окупаемости) большие капитальные вложения в строительство базовых станций и коммутационного оборудования.
2. Спутниковые системы связи могут быть рекомендованы для организации: радиосвязи в аварийных ситуациях; пассажирской радиотелефонной связи в фирменных поездах, предназначенных для международного обмена; резерва каналов оперативно-технологической связи; в других экстренных случаях, требующих оперативного вмешательства со стороны руководства дороги. Высокие эксплуатационные расходы не позволяют использовать ССС в качестве основного средства управления движением поездов.
3. Попытки адаптации систем поездной диспетчерской и ремонтно-оперативной радиосвязи к требованиям пассажирской, а также служебной радиосвязи на перегонах в аварийных ситуациях не принесут успеха в силу их узконаправленных функциональных возможностей.
Список литературы
Камнев Е.Ф., Белов А.С. "Система спутниковой связи "Сириус-МПС", "Автоматика, телемеханика и связь", 1993, № 2.
Савонин В.Н., Моисеев С.В. "Транкинговые системы связи на железных дорогах", "Автоматика, телемеханика и связь", 1996, № 4.
Панов В.Н., Смычёк М.А. "Спутниковая связь из двущегося поезда."Автоматика, телемеханника и связь",1995, №3
В.Н. Худов. Оперативно-технологическая связь железных дорог: (Методы анализа и расчета телефон. тракта) 142 c. ил. 22 см. М.: Транспорт, 1979.
Н.Х. Дагаева, Ю.И. Клеванский. Радиосвязь на железнодорожном транспорте: [Учеб. для техникумов и техн. шк. ж.-д. трансп.] / Н. Х. Дагаева, Ю. И. Клеванский 311,[1] с. ил. 21 см М.: Транспорт, 1991
Руководящие указания по организации и расчету ремонтно-оперативной радиосвязи: ЦШР-20/53: Утв. Гл. упр. сигнализации, связи и вычисл. техники М-ва путей сообщ. СССР 26.09.89 28 с. ил. 21 см М.: Транспорт, 1991
Ю.В. Ваванов. Технологическая железнодорожная радиосвязь/ Ю. В. Ваванов, 182 с. ил., М.: Транспорт, 1985