ОСНОВНЫЕ УЗЛЫ АНАЛОГОВЫХ ВОЛЬТМЕТРОВ




Рассмотрим схемные решения основных функциональных узлов, определяю­щих метрологические характеристики аналоговых вольтметров. Большинство этих узлов применяются и в других видах электронных измерительных приборов.

Входное устройство

Как уже указывалось выше, ВУ предназначено для расширения пределов измерения вольтметра. В простейшем случае оно представляет собой аттенюа­тор, выполненный по резистивной (рис. 3.18, а), емкостной (рис. 3.18, б) или ком­бинированной (рис. 3.18, в) схемам.

Наиболее простой и универсальной (для U х= и U x~) является схема, пред­ставленная на рис. 3.18, а, но на высоких частотах существенное влияние начи­нают оказывать паразитные емкости. Поэтому на высоких частотах переходят либо к емкостной схеме, либо к комбинированной, которая при R1C1 = R2C2 ока­зывается частотно-компенсированной (коэффициент деления k = R2/(R1 + Р2), как и для схемы, изображенной на рис. 3.18, а).

Выполнение остальных требований и прежде всего обеспечение высокого входного сопротивления и минимальной входной емкости вольтметра приводит в ряде случаев к усложнению структуры ВУ. Наиболее универсальным и часто применяемым в современных вольтметрах переменного тока является ВУ, струк­турная схема которого представлена на рис. 3.19.

 

Принципиальной особенностью данной схемы является изменение Uв с помощью низкоомного резистивного аттенюатора с постоянным входным и выходным импедансом. Это повышает точность измерения Ux~, но требует введения в структу­ру ВУ преобразователя импеданса (ПИ), обеспечивающего трансформацию высо­кого входного сопротивления вольтметра в малое входное сопротивление атте­нюатора. В качестве ПИ наиболее часто используют повторитель напряжения на полевом транзисторе с глубокой отрицательной обратной связью. С помощью

Рис. 3.18. Схемы аттенюаторов вольтметров:

а—на резисторах; б — на конденсаторах; в — комбинированная.

 

Рис. 3.19. Структурная схема уни­версального входного устройства.

входного делителя напряжения (ВДН) предусматривается дополнительная воз­можность расширения пределов измерения вольтметра. ВДН представляет собой фиксированный делитель резистивно-емкостного типа (см. рис. 3.18, в)

На высоких частотах входное сопротивление вольтметра уменьшается, а входная емкость и индуктивности проводников образуют последовательный ко­лебательный контур, который на резонансной частоте имеет практически нулевое сопротивление. Для нейтрализации этих эффектов ПИ конструктивно выполня­ется как выносной пробник с ВДН в виде насадки.

Усилители

Усилители постоянного тока, как видно из структурных схем (см. рис. 3.13 и 3.14, о), обеспечивают получение мощности, достаточной для приведения в дей­ствие ИМ магнитоэлектрического прибора, и согласование входного сопротивле­ния ИУ с выходным сопротивлением ВУ или детектора. К УПТ предъявляются два основных требования: высокое постоянство коэффициента усиления и пре­небрежимо малые флюктуации выходной величины при отсутствии Ux= (Дрейф нуля). Поэтому все практические схемы УПТ имеют глубокую отрицательную обратную связь (ООС), обеспечивающую стабильную работу их и нечувствитель­ность к перегрузкам. Радикальными методами борьбы с дрейфом нуля являются его периодическая коррекция, а также преобразование Uх= в переменное напря­жение с последующим усилением и выпрямлением этого напряжения.

Усилители переменного тока в соответствии со своим функциональным на­значением (см. рис. 3.14, б) должны иметь высокую чувствительность, большое значение и высокую стабильность коэффициента усиления, малые нелинейные искажения и широкую полосу пропускания (за исключением УПЧ селективного вольтметра). Удовлетворить этим противоречивым требованиям могут только многокаскадные усилители с ООС и звеньями для коррекции частотной харак­теристики. В некоторых случаях применяются логарифмические усилители для получения ^линейной шкалы в децибелах. Если ставится задача минимизации аддитивной погрешности вольтметра, усилители могут быть двухканальными с усилением основного сигнала и сигнала, корректирующего аддитивную погреш­ность. Для расширения функциональных возможностей многие вольтметры име­ют специальный выход усилителя и могут использоваться как широкополосные усилители. Более того, усилители могут выпускаться как самостоятельные из­мерительные приборы, образуя подгруппу У.

Детально усилители постоянного и переменного тока рассматриваются в курсе «Усилительные устройства».

Детектор

Тип детектора определяет, как уже указывалось, принадлежность вольтмет­ров переменного тока к вольтметрам амплитудного, среднеквадратического или средневыпрямленного напряжения. В соответствии с этим сами детекторы клас­сифицируются следующим образом: по параметру Ux~^ которому соответствует ток или напряжение в выходной цепи детектора: пиковый детектор, детекторы среднеквадратического и средневыпрямленного значений напряжения; по схеме входа: детекторы с открытым и закрытым входом по постоянному напряжению;

по характеристике детектирования: линейные и квадратичные детекторы.

Рис. 3.20. Схемы пикового детектора:

А — с открытым входом; Б — с закрытым входом.

Пиковый детектор — это детектор, выходное напряжение которого непосред­ственно соответствует t/max или <7min (Ов или Us). Пиковый детектор относит­ся к линейным и может иметь открытый (рис. 3.20, а) или закрытый (рис. 3.20, б) вход по постоянному напряжению.

Принцип работы пиковых детекторов специфичен и заключается в заряде конденсатора С через диод V до максимального (пикового) значения Ux~, кото­рое затем запоминается, если постоянная времени разряда С (через R) значитель­но превышает постоянную времени заряда. Полярность включения V определяет соответствие Ux=, либо Umax(Uв), либо Umin(Uн), а возможные пульсации U х= сглаживаются цепочкой Рф, Сф. Если детектор имеет открытый вход, U х= определяется суммой U и Uв(Uн), т. е. соответствует Umax (Umin) При закрытом входе U х= соответствует Uв(Uн). Если же Ux~ не содержит посто­янной составляющей, то схемы, изображенные на рис. 3.20, а, б, идентичны, а U х= соответствует Um. В некоторых случаях применяют двухполупериодные пи­ковые детекторы с удвоением напряжения, позволяющие прямо измерять значе­ние размаха напряжения.

Существенным достоинством пиковых детекторов являются большое входное сопротивление (равное R/2 для схемы на рис. 3.20, а и R/3— для схемы на рис. 3.20, б) и наилучшие по сравнению с другими типами детекторов частотные свойства. Поэтому пиковые детекторы наиболее часто применяют в вольтметрах первой модификации (см. рис. 3.14, о), конструктивно оформляя совместно с ВУ в виде выносного пробника. В этом случае по кабелю, соединяющему пробник с прибором, передается Uх=.

Детектор среднеквадратического значения— это преобразователь переменно­го напряжения в постоянный ток (напряжение), пропорциональный U2ск . Харак­теристика детектирования в этом случае должна быть квадратичной, а при на. личии U- необходим детектор с открытым входом. В современных типах вольт­метров применяются в основном квадратичные детекторы с термопреобразовате­лями, аналогичными преобразователям термоэлектрических амперметров. Основ­ным недостатком их, как отмечалось ранее, является квадратичный характер шкалы прибора. В вольтметрах этот недостаток устраняется применением диф­ференциальной схемы включения двух (или более) термопреобразователей, как показано на рис. 3.21.

 

Рис. 3.21. Структурная схема детектора среднеквад­ратического значения напряжения.

 

При подаче на термопреобразователь ТП1 измеряемого напряжения Uх~ выходное напряжение ТП1 по аналогии с (3.26) U1=ktU2ск .

Кроме ТП1, в схеме имеется второй термопреобразователь ТП2, включен­ный встречно с ТП1. На ТП2 подается напряжение обратной связи, поэтому его

выходное напряжение U2 == ktBU23.

Таким образом, на входе УПТ имеет место результирующее напряжение

U1 - U2 = kt(U2ск - BU23)

чему соответствует

U3 = kуптkт(U2ск - BU23).

Если параметры схемы выбрать так, чтобы

kуптkт BU23>> U3,

то тогда окончательно U3 º Uск, т. е. шкала ИУ будет равномерной.

Детектор средневыпрямленного значения— это преобразователь переменного напряжения в постоянный ток, пропорциональный Uсв. Схемно он базируется на двухполупериодном полупроводниковом выпрямителе, рассмотренном при анализе выпрямительных амперметров (см. § 3.4.1). Необходимо, однако, добавить, что линейность характеристики таких детекторов будет тем лучше, чем больше Uх~ (при малых Ux~ детектор становится квадратичным). Поэтому детекторы средневыпрямленного значения, как правило, применяют в вольтметрах второй моди­фикации (рис. 3.14, б).

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: