Перемещение в случае одномерного равноускоренного движения




Вопрос

Разме́рность физической величины — выражение, показывающее, во сколько раз изменится единица физической величины при изменении единиц величин, принятых в данной системе за основные. Размерность представляет собой одночлен, составленный из произведения обобщённых символов основных единиц в различных (целых или дробных, положительных или отрицательных) степенях, которые называются показателями размерности. Так, например, размерность скорости LT −1, где Т представляет собой размерность времени, а L — длины. Эти символы обозначают единицы времени и длины независимо от их конкретного размера (секунда, минута, час, метр, сантиметр и т. д.).

Термин размерность может относиться также к единице измерения физической величины. Часто абстрагируются от конкретных единиц измерения и описывают размерности в терминах основных физических величин, таких, например, как длина, масса и время, которые обозначают символами L, M и T, соответственно. Размерность записывают, как произведение этих символов, каждый из которых возведён в рациональную степень.

В СИ определены семь единиц основных физических величин, размерности которых считаются независимыми друг от друга.

СИ — система единиц физических величин, современный вариант метрической системы. (m,кг, с, А (ампер), моль (кол-во вещества),

 

Вопрос

Механика - раздел физики, которая изучает закономерности движения материальных тел.

Кинематика - изучает законы движения тел без учета причин, вызывающих или изменяющих это движение. (S (r) - [м], v - [м/c], a - [м/c2], t - [c])

- векторная величина характеризуется направлением и точкой приложения

Динамика - изучает движение тел с учетом причин, которые вызывают или изменяют это движение. (F (сила) - [H], m - [кг])

статика - изучает законы равновесия систем.

Классическая механика (Галилея и Ньютона) - изучает движение макроскопических тел (малых) скорость которых намногоменьше скорости света в вакууме. V<<C

Квантовая механика (элементарных частиц) - изучает движение микроскопических тел, скорость которых намного больше, чем скорость в вакууме. V>>C

Релятивистская механика (теория относительности Эйнштейна) - изучает движение макроскопических тел, скорость которых равна скорости света. V~C (приблизительно равно)

Вопрос

Материальная точка – тело, обладающее массой, размерами которого можно пренебречь в конкретных условиях.

Система материальных тел – несколько материальных точек, которые взаимодействуют друг с другом.

Абсолютно твердое тело – тело, которое не деформируется не при каких условиях, т.е. расстояние между любыми 2мяего точками остается неизменным.

Сплошная среда - механическая система, обладающая бесконечным числом внутренних степеней свободы. Её движение в пространстве, в отличие от других механических систем, описывается не координатами и скоростями отдельных частиц, а скалярным полем плотности и векторным полем скоростей. В зависимости от задач, к этим полям могут добавляться поля других физических величин (концентрация, температура, поляризованность и др.)

пространство понимают, в основном, в двух смыслах:

1) так называемое обычное пространство, называемое также физическим пространством[1] — трехмерное пространство нашего повседневного мира и/или прямое развитие этого понятия в физике (развитие, возможно, иногда достаточно изощренное, но прямое, так что можно сказать: наше обычное пространство на самом деле таково). Это пространство, в котором определяется положение физических тел, в котором происходит механическое движение, геометрическое перемещение различных физических тел и объектов.

2) различные абстрактные пространства в том смысле, как они понимаются в математике, не имеющие к обычному («физическому») пространству никакого отношения, кроме отношения более или менее далекой формальной аналогии (иногда, в отдельных простых случаях, правда, просматривается и генетическая связь, например для пространства скоростей, импульсного пространства). Обычно это те или иные абстрактные векторные или линейные пространства, впрочем, часто снабженные разнообразными дополнительными математическими структурами. Как правило, в физике термин пространство применяется в этом смысле обязательно с уточняющим определением или дополнением (пространство скоростей, цветовое пространство, пространство состояний, гильбертово пространство, пространство спиноров), или, в крайнем случае, в виде неразрывного словосочетания абстрактное пространство. Такие пространства используются однако для постановки и решения вполне «земных» задач в обыкновенном трёхмерном пространстве.

Время

Классическая физика рассматривала время - как нечто универсальное, независимое, то, относительно чего отсчитывают события и с помощью чего измеряют интервалы между событиями. Время полагалось непрерывным, равномерным, абсолютным, а физическое время (средство сравнения динамики материальных процессов) отождествлялось с математическим линейным одномерным пространством дифференциальной геометрии. В теории относительности, которая появилась в начале 20 века, время уже не носит абсолютный характер, оно может изменяться, предполагается, что в движущихся системах отсчета и вблизи тяготеющих масс время течет медленнее. В настоящее время в физике используют как непрерывное время процессов, так и дискретное время событий.

 

В современной физике время образуется из множества процессов с различной динамикой и представляет собой интегрированное свойство окружающего мира. Фактически ни процессы, ни изменения, ни движения, не происходят во времени. Наоборот, они сами служат реальной физической основой для введения понятия времени. Время оказывается лишь более высоким уровнем абстракции, характеризующее динамику этих явлений. Тут прослеживается полная аналогия с понятием пространства, которое базируется на понятии расстояния, и является лишь более высоким уровнем абстракции. Аналогично, понятие времени базируется на ходе реальных движений, процессов, изменений и является лишь более удобной формой абстракции. Измерение временных соотношений производится методом сравнения промежутков между реальными событиями с количеством циклов высокостабильных циклических процессов, выбранных в качестве эталона. Таким образом, осуществляется отображение физического времени на математическую модель. Часы - это внутрисистемная динамика какой - либо системы, взятая в качестве эталона и служащая единицей динамичности, через которую выражается динамика и длительность других процессов.

 

 

Вопрос

Движения Материальной Точки по Окружности

Движение точки по окружности может быть очень сложным (рис. 17).

Рассмотрим подробно движение точки по окружности, при котором v = const. Такое движение называется равномерным движением по окружности. Естественно, вектор скорости не может быть неизменным (v не равно const), так как направление скорости постоянно меняется.

Время, за которое траектория точки опишет окружность, называется периодом обращения точки (Т). Число оборотов точки в одну секунду называется частотой обращения (v). Период обращения можно найти по формуле:

Естественно, перемещение точки за один оборот будет равно нулю. Однако пройденный путь будет равен 2ПиR, а при числе оборотов п путь будет равен 2ПиRn или 2ПиRt/T, где t - время движения.

Ускорение при равномерном движении точки по окружности направлено к ее центру и численно равно а = v2/R.

Это ускорение называется центростремительным (или нормальным). Вывод этого равенства может быть следующим. Приведем векторы скорости к одной точке хотя бы за - Т (можно и за Т/2 или Т) (рис. 18).

Тогда сумма изменений векторов скоростей за малые промежутки времени будет равна длине дуги АВ, которая равна модулю | v2 - v1 | за время t = 1/4*Т.

Определим длину дуги. Поскольку радиусом для дуги будет модуль вектора v1=v2=v, то длина дуги l может быть вычислена как длина четверти окружности с радиусом v:

После сокращения получим:

Если же движение равнопеременное, то v Ф const, тогда рассматривают другую составляющую ускорения, обеспечивающую изменение модуля скорости. Это ускорение называется тангенциальным:

Тангенциальное ускорение направлено по касательной к траектории, оно может совпадать по направлению со скоростью (движение равноускоренное) или быть противоположно направленным (движение равнозамедленное).

 

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

Вектор направлен вдоль оси вращения по правилу правого винта, т. е. так же, как и вектор (рис. 7). Размерность угловой скорости, а ее единица — радиан в секунду (рад/с).

 

Рис. 6 Рис. 7

 

Линейная скорость точки (см. рис. 6)

Т.е.

В векторном виде формулу для линейной скорости можно написать как векторное произведение:

При этом модуль векторного произведения, по определению, равен еаКяп(шК) а направление совпадает с направлением поступательного движения правого винта при его вращении от к R.

Если w =const, то вращение равномерное и его можно характеризовать периодом вращения Т — временем, за которое точка совершает один полный оборот, т. е поворачивается на угол 2p. Так как промежутку времени Dt = Т соответствует Dj = 2p, то w = 2p/Т,откуда

Число полных оборотов, совершаемых телом при равномерном его движении пс ОКОУЖНОСТИ, в единицу времени называется частотой вращения:

Откуда

Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

 

При вращении тела вокруг неподвижной оси вектор углового ускорения направлю вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор сонаправлен вектору (рис. 8), при замедлен ном — противонаправлен ему (рис. 9).

 

 

 

Рис. 8 Рис. 9

 

Таким образом, связь между линейными (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная скорость v, тангенциальное ускорение аt, нормальное ускорение аn) и угловыми величинами (угол поворота j, угловая скорость w, угловое ускорение e) выражается следующими формулами:

В случае равнопеременного движения точки по окружности (e—const)

где w0 — начальная угловая скорость.

 

Вопрос

Равноускоренное движение — движение, при котором ненулевой вектор ускорения остаётся неизменным по модулю и направлению.

Примером такого движения является движение тела, брошенного под углом к горизонту в однородном поле силы тяжести — тело движется с постоянным ускорением , направленным вертикально вниз.

При равноускоренном движении по прямой скорость тела определяется формулой:

Зная, что , найдём формулу для определения координаты x:

Примечание. Равнозамедленным можно назвать движение, при котором модуль скорости равномерно уменьшается со временем (если вектора и противонаправлены). Равнозамедленное движение также является равноускоренным.

Перемещение в случае одномерного равноускоренного движения

В случае одномерного равноускоренного движения вдоль координаты x имеет место формула:

,

 

Скорость

Для характеристики движения материальной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.

Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответствует радиус-вектор г0 (рис. 3). В течение малого промежутка времени Dt точка пройдет путь Ds и получит элементарное (бесконечно малое) перемещение Dг.

 

 

Рис. 3

 

Вектором средней скорости <v> называется отношение приращения Dг радиуса-вектора точки к промежутку времени Dt:

(2.1)

Направление вектора средней скорости совпадает с направлением Dг. При неограниченном уменьшении Dt средняя скорость стремится к предельному значению, которое называется мгновенной скоростью v:

 

Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени. Так как секущая совпадает с касательной, то вектор скорости v направлен по касательной к траектории в сторону движения (рис. 3). По мере уменьшения Dt путь Ds все больше будет приближаться к |Dг|, поэтому модуль мгновенной скорости

 

Таким образом, модуль мгновенной скорости равен первой производной пути по времени:

(2.2)

При неравномерном движении модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной <v> — средней скоростью неравномерного движения:

 

Из рис. 3 вытекает, что <v> > |<r>|, так как Ds >|Dг|, и только в случае прямолинейного движения

Если выражение ds=vdt (см. формулу (2.2)) проинтегрировать по времени в пределах от t до t+ Dt, то найдем длину пути, пройденного точкой за время Dt:

(2.3)

В случае равномерного движения числовое значение мгновенной скорости постоянно; тогда выражение (2.3) примет вид

Длина пути, пройденного точкой за промежуток времени от t\ до fa, дается интегралом



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: