Обмотки якоря машин постоянного тока




1. Петлевые обмотки якоря

Основные понятия. Обмотка якоря машины постоянного тока представляет собой замкнутую систему проводников, определенным образом уложенных на сердечнике якоря и присоединенных к коллектору.

Элементом обмотки якоря является секция (катушка), присоединенная к двум коллекторным пластинам. Расстояние между пазовыми частями секции должно быть равно или мало отличаться от полюсного деления τ (рис.1):

τ = π Da/2р (1)

Здесь Da — диаметр сердечника якоря, мм.

Рис. 1. Расположение пазовых сторон секции на сердечнике якоря

 

Обмотки якоря обычно выполняют двухслойными. Они характеризуются следующими параметрами: числом секций S; числом пазов (реальных) Z; числом секций, приходящихся на один паз, ; числом витков секции ωс; числом пазовых сторон вобмотке N; числом пазовых сторон в одном пазу . Верхняя пазовая сторона одной секции и нижняя пазовая сторона другой секции, лежащие в одном пазу, образуют элементарный паз. Число элементарных пазов в реальном пазе zn определяется числом секций, приходящихся на один паз: (рис.2).

Рис. 2. Элементарные пазы

Схемы обмоток якоря делают развернутыми, при этом все секции показывают одновитковыми. В этом случае каждой секции, содержащей две пазовые стороны, соответствует один элементарный паз. Концы секций присоединяют к коллекторным пластинам, при этом к каждой пластине присоединяют начало одной секции и конец другой, т. е. на каждую секцию приходится одна коллекторная пластина. Таким образом, для обмотки якоря справедливо S=Zэ=К, где Zэ — число элементарных пазов; К — число коллекторных пластин в коллекторе. Число секций, приходящихся на один реальный паз, определяется отношением Zэ/Z.

Простая петлевая обмотка якоря. В простой петлевой обмотке якоря каждая секция присоединена к двум рядом лежащим коллекторным пластинам. При укладке секций на сердечнике якоря начало каждой последующей секции соединяется с концом предыдущей, постепенно перемещаясь при этом по поверхности якоря (и коллектора) так, что за один обход якоря укладывают все секции обмотки. В результате конец последней секции оказывается присоединенным к началу первой секции, т. е. обмотка якоря замыкается.

На (рис. 3, а, б) изображены части развернутой схемы простой петлевой обмотки, на которых показаны шаги обмотки — расстояния между пазовыми сторонами секций по якорю: первый частичный шаг по якорю у1, второй частичный шаг по якорю у2 и результирующий шаг по якорю у. Если укладка секций обмотки ведется слева направо по якорю, то обмотка называется правоходовой (рис. 3, а), а если укладка секций ведется справа налево, то обмотка называется левоходовой (рис. 3, б). Для правоходовой обмотки результирующий шаг

у = у1 = у2 (2)

Рис. 3. Простая петлевая обмотка:

а — правоходовая; б — левоходовая; в — развернутая схема

 

Расстояние между двумя коллекторными пластинами, к которым присоединены начало и конец одной секции, называют шагом обмотки по коллектору ук. Шаги обмотки по якорю выражают в элементарных пазах, а шаг по коллектору — в коллекторных делениях (пластинах).

Начало и конец каждой секции в простой петлевой обмотке присоединены к рядом лежащим коллекторным пластинам, следовательно, у= ук= ±1, где знак плюс соответствует правоходовой обмотке, а знак минус — левоходовой.

Для определения всех шагов простой петлевой обмотки достаточно рассчитать первый частичный шаг по якорю:

, (3)

где — некоторая величина, меньшая единицы, вычитая или суммируя которую получают значение шага у1, равное целому числу.

Второй частичный шаг обмотки по якорю

(4)

 

Параллельные ветви обмотки якоря. Если проследить за прохождением тока в секциях обмотки якоря (см. рис. 3, в), то можно заметить, что обмотка состоит из четырех участков, соединенных параллельно друг другу и называемых параллельными ветвями. Каждая параллельная ветвь содержит несколько последовательно соединенных секций с одинаковым направлением тока в них. Распределение секций в параллельных ветвях показано на электрической схеме обмотки (рис. 4). Эту схему получают из развернутой схемы обмотки (см. рис. 3, б ) следующим образом. На листе бумаги изображают щетки и имеющие с ними контакт коллекторные пластины, как это показано на рис. 4. Затем совершают обход секций обмотки начиная с секции 1, которая оказывается замкнутой накоротко щеткой В1. Далее идут секции 2 и 3, которые образуют параллельную ветвь. Таким же образом обходят все остальные секции. В результате получаем схему с четырьмя параллельными ветвями, по две секции в каждой ветви.

Рис. 4. Электрическая схема обмотки рис. 3, в.

 

Из полученной схемы следует, что ЭДС обмотки якоря определяется значением ЭДС одной параллельной ветви, тогда как значение тока обмотки определяется суммой токов всех ветвей обмотки:

, (5)

где — число параллельных ветвей обмотки якоря; iа — ток одной параллельной ветви.

В простой петлевой обмотке число параллельных ветвей равно числу главных полюсов машины: 2а = 2р.

Нетрудно заметить, что число параллельных ветвей в обмотке якоря определяет значение основных параметров машины — тока и напряжения.

Сложная петлевая обмотка. При необходимости получить петлевую обмотку с большим числом параллельных ветвей, как это требуется, например, в низковольтных машинах постоянного тока, применяют сложную петлевую обмотку. Такая обмотка представляет собой несколько (обычно две) простых петлевых обмоток, уложенных на одном якоре и присоединенных к одному коллектору. Число параллельных ветвей в сложной петлевой обмотке 2а=2рm, где т — число простых петлевых обмо­ток, из которых составлена сложная обмотка (обычно т = 2). Ширина щеток при сложной петлевой обмотке принимается такой, чтобы каждая щетка одновременно перекрывала т коллекторных пластин, т. е. столько пластин, сколько простых обмоток в сложной. При этом про стые обмотки оказываются присоединенными параллельно друг другу. На рис. 5 показана развернутая схема сложной петлевой обмотки, состоящей из двух простых =2): 2р=4; Zэ=16. Результирующий шаг обмотки по якорю и шаг по коллектору сложной петлевой обмотки принимают равным у=ук=т. Первый частичный шаг по якорю определяют по (3).

 

Рис. 5. Развернутая схема сложной петлевой обмотки

 

2. Волновые обмотки якоря

Простая волновая обмотка. Простую волновую обмотку получают при последовательном соединении секций, находящихся под разными парами полюсов (рис. 6). Концы секций простой волновой обмотки присоединены к коллекторным пластинам, удаленным друг от друга на расстояние шага обмотки по коллектору ук=у. За один обход по якорю укладывают столько секций, сколько пар полюсов имеет машина, при этом конец последней по обходу секции присоединяют к пластине, расположенной радом с исходной.

Простую волновую обмотку называют левоходовой, если конец последней по обходу секций присоединяется к пластине, находящейся слева от исходной (рис. 6, а). Если же эта пластина находится справа от исходной, то обмотку называют правоходовой (рис. 6, б). Секции волновой обмотки могут быть одновитковыми и многовитковыми. Шаг простой волновой обмотки по коллектору

(6)

Знак минус соответствует левоходовой обмотке, а знак плюс — правоходовой. Правоходовая обмотка не получила практического применения, так как ее выполнение связано с дополнительным расходом меди на перекрещивание лобовых частей.

Первый частичный шаг обмотки определяют по (3), а второй частичный шаг .

При первом обходе по якорю укладываем секции 1 и 7 (рис. 6, в). При втором обходе укладываем секции 13 и 6 и т. д., пока не будут уложены все 13 секций и обмотка не окажется замкнутой. Секции 3, 6 и 9 в рассматриваемый момент времени замкнуты на коротко через щетки одинаковой полярности и провода, соединяющие их.

Рис. 6. Простая волновая обмотка: а — правоходовая, б — левоходовая;

в — развернутая схема

 

Рис. 7. Электрическая схема обмотки рис. 6, в

Затем определяем полярность щеток. Далее выполняем электрическую схему (схему параллельных ветвей), из которой видно (рис. 7), что обмотка состоит из двух параллельных ветвей (2 а= 2). Это является характерным для простых волновых обмоток, у которых число параллельных ветвей не зависит от числа полюсов и всегда равно двум.

Из рассмотренных схем видно, что секции, входящие в одну параллельную ветвь, равномерно распределены под всеми полюсами машины. Следует также отметить, что в простой волновой обмотке можно было бы обойтись двумя щетками, например щетками В2 и А2. Но в этом случае нарушилась бы симметрия обмотки, и число секций в параллельных ветвях стало бы неодинаковым: в одной ветви семь секций, а в другой — шесть. Поэтому в машинах с простыми волновыми обмотками устанавливают полный комплект щеток, столько же, сколько главных полюсов, тем более что это позволяет уменьшить значение тока, прихо­дящегося на каждую щетку, а следовательно, уменьшить размеры коллектора.

Сложная волновая обмотка (рис. 8). Несколько простых волновых обмоток (обычно две), уложенных на одном якоре, образуют сложную волновую обмотку.

Рис. 8. Развернутая схема сложной волновой обмотки

 

Число параллельных ветвей в сложной волновой обмотке 2 а =2 m (обычно 2 а = 4), где т — число простых обмоток в сложной (обычно т=2). Простые обмотки, входящие в сложную, соединяют параллельно посредством щеток. Шаг по коллектору, а следовательно, и результирующий шаг по якорю

. (7)

Первый частичный шаг по якорю определяют по (3).

Порядок выполнения схемы обмотки такой же, как и при сложной петлевой обмотке: сначала укладывают в пазы якоря одну простую обмотку, состоящую из нечетных секций, а затем другую, состоящую из четных секций (рис. 8) Число параллельных ветвей в обмотке 2 а= 4.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-07-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: