Расчет нагрузки колонны
Подсчет расчетной нагрузки на колонну.
2.2 Расчет колонны первого этажа
N=3504кН; ℓ 01=2.87
Определим гибкость колонны.
λ= ℓ0 = 2.87 =8.2см
hK 35
8.2>4 значит, при расчете необходимо учитывать случайный эксцентриситет
ℓСЛ = hК = 35 =1.16см
30 30
ℓ/600 = 287/600 = 0.48
ℓСЛ≥ℓ/600
1.16 ≥ 0.48
Принимаем наибольшее, если=1.16см.
Рассчитанная длинна колонны ℓ0=3.22см, это меньше чем 20×hK,
следовательно, расчет продольной арматуры в колонне вычисляем по формуле:
АS = N – AB × Rb×γb
φ × RS RS
φ=φB+2×(φE +φB)×α
φE и φВ – берем из таблицы
φℓ=0.91
φB=0.915
α= μ× RS = 0.01× 360 = 0.24
RB×γB 17.0×0.9
NДЛ/N=2743/3504=0.78
ℓ0/h=2.87/35=8.2
φ= 0.915 + (0.91– 0.915) × 0.24 = 0.22
Проверяем коэффициент способности
NСЕЧ = φ(RbAB×γB+ASRS)= 0.22(17.0×0.01×0.9+41.24×360)= 4997
Проверяем процентное расхождение оно должно быть не больше 10%
N = 4997000 – 3504000 × 100% = 4.2 %
4.2 %<5 % — условие выполняется
AS = 3504000 17.0×0.9
0.9×360×100 35×35× 360 = 41.24см2
Возьмем пять стержней диаметром 32 мм,
AS = 42.02см
М = АS = 42.02 × 100% = 3.40%
AБЕТ 1225
2.3 Расчет колонны второго этажа.
N= 2850 кН;
ℓ01= 2.87 м
Определим гибкость колонны:
λ= ℓ0 = 287 = 8.2см 9.2>4 – значит при расчете необходимо
hK 35 учитывать случайный эксцентриситет
ℓСЛ = hK/30=35/30=1.16см
ℓСЛ ≥ ℓ = 287 = 0.47
600 600
ℓ — высота колонны
Принимаем наибольшее, значение если =1.16см
Рассчитанная длина колонны ℓ0=287см, это меньше чем 20×hК, следовательно расчет продольной арматуры в колонне вычисляем по формуле:
AS = N Rb× γВ
φ×RS AB × RS
φ= φВ+2 × (φЕ – φB)×α
α= М×RS = 0.01× 360 = 0.23
RB×γB 17.0×0.9
φE и φВ – берем из таблицы
NДЛ/N = 2235/2850 = 0.82
ℓ0/h = 287/35=8.2
φE = 0.91
φB = 0.915
φ= 0.915 + (0.91– 0.915) × 0.22 = 0.20
АS = 285000 35×35 × 17.0×0.9 = 43.26 см2
0.9×360×100 360
Возьмем семь стержней диаметром 28мм,
АS = 43.20см
М = АS = 43.20 × 100%= 3.3%
AБЕТ 1225
Проверка экономии:
NCЕЧ = φ× (RВ×γΒ×AБЕТ +AS×RS) = 0.87×(17.0×0.9×1225×100+43.20×360×100)=2983621 кН
Проверяем процентное расхождение
2983621 – 2850000 × 100% = 4.6%
4.6% < 5% условие выполняется
2.4Расчет монтажного стыка колонны.
Стык рассчитывается между первыми и вторыми этажами. Колонны стыкуются сваркой стальных торцевых листов, между которыми при монтаже вставляют центрирующую прокладку толщиной 5мм. Расчетные усилия в стыке принимаем по нагрузке второго этажа NСТ=N2=2852 кН из расчета местного сжатия стык должен удовлетворять условие:
N ≤ RПР×FСМ
RПР – приведенная призменная площадь бетона;
FСМ – площадь смятия или площадь контакта
Для колонны второго этажа колонна имеет наклонную 4 диаметром 20мм, бетон В30 т.к продольные арматуры обрываются в зоне стыка то требуется усиление концов колон сварными поперечными сетками. Проектируем сетку из стали АIII.Сварку торцевых листов производим электродами марки Э-42,
RСВАРКИ =210мПа
Назначаем размеры центрирующей прокладки
С1 = C 2 = bK = 350 = 117мм
3 3
Принимаем прокладку 117×117×5мм.
Размеры торцевых листов:
b=h=b–20=330мм
Усилие в стыке передается через сварные швы по периметру торцевых листов и центрирующую прокладку. Толщина опорной пластины δ=14мм.
NCТ = NШ + Nп
Определим усилие, которые могут воспринимать сварные швы
NШ = NСТ × FШ
FK
FШ – площадь по контакту сварного шва;
FK – площадь контакта;
FK = FШ + FП
F= 2 × 2.5 × δ × (h1+в1–5δ)=2 × 2.5 × 1.4 × (35 + 35–5 × 1.4) = 504 см2
FП = (C1+3δ) × (C2+3δ) = (11.7+3×1.4) × (11.7+3 × 1.4) = 252.81см2
FK = 504+252.81= 756.81см2
NШ = (2850×504) / 756.81 = 1897 кН
NП = NCТ –NШ = 2850–1897 = 953 кН
Находим требуемую толщину сварочного шва, по контуру торцевых листов
ℓШ = 4 × (b1–1) = 4 × (35–1) = 136см
hтребш = NШ = 1897000 = 0.66см
ℓШ × RСВ 136 × 210 × (100)
Принимаем толщину сварного шва 7мм.. Определим шаг и сечение сварных сеток в торце колонны под центральной прокладкой. По конструктивным соображениям у торцов колонны устраивают не менее 4-х сеток по длине не менее 10d (d ― диаметр рабочих продольных стрежней), при этом шаг сеток должен быть не менее 60мм и не более 1/3 размера меньшей стороны сечения и не более 150см.
Размер ячейки сетки рекомендуется принимать в пределах от 45–150 и не болей 1/4 меньшей стороны сечения элемента.
Из стержней Ø 6мм, класс А-III, ячейки сетки 50×50, шаг сетки 60мм. Тогда для квадратной сетки будут формулы:
1) Коэффициент насыщения сетками:
MCK = 2×fa = 2×0.283 = 0.023
а×S 4×6
fa — площадь 1-ого арматурного стержня
а — количество сеток
![]() |
2) Коэффициент
αC= MCK× Ra = 0.23×360 = 5.7
Rb× m b 17.0×0.85
Коэффициент эффективности армирования
К = 5 + αС = 5 + 5.7 = 1.12
1 + 1.5αС 1 + 8.55
NСТ ≤ RПР×FCМ
RПР=Rb×mb×γb+k×MCK×Ra×γK
γb= 3√ FК = 3√ 1225 = 1.26
FСМ 756.81
γК= 4.5 – 3.5 × FCM = 4.5 – 3.5 × 756.81 = 1.55
FЯ 900
RПР=17.0× 0.85 ×1.26 + 1.12 × 0.023 × 360 ×1.55 = 2617 мПа
2850 ≤ 2617× 756.81 кН
2850 кН ≤ 1980571 кН
2.5Расчет консоли колонны.
Опирание ригеля происходит на железобетонную колонну, она считается короткой если ее вылет равен не более 0.9 рабочий высоты сечения консоли на грани с колонной. Действующая на консоль опорная реакция ригеля воспринимается бетонным сечением консоли и определяется по расчету.
Q= q×ℓ = 22.396 ×4 × 6 = 268.75 кH
2 2
Определим линейный вылет консоли:
ℓКН = Q = 223960 = 9.6 см
bP × Rb × mb 16 × 17.0 × (100) × 0.85
С учетом величины зазора между торцом ригеля и граней колонны равняется 5см,
ℓК=ℓКН + 5= 9.6+ 5=14.6 ― должно быть кратным 5 Þ ℓКН=15см
ℓКН=15см (округлили)
Высоту сечения консоли находим по сечению проходящему по грани колонны из условия:
Q ≤ 1.25 × К3 × K4 × Rbt × bk × h20
а
а ― приведенная длина консоли
h0 ≤ Q
2.5 × Rbt × bК × γb — максимальная высота колонны
h0 ≤ Q
2.5 × Rbt × bК × γb — максимальная высота колонны
![]() |
h0 ≥√ Q× a минимальная высота
1.25×K3×K4×Rbt×bK×γb
а=bK Q = 15 223960 = 22.14 см
2×bK×Rb×mb 2 × 35×17.0× (100)×0.85
h0 MAX ≤ 223960 = 24 см
2.5 ×1.2 × (100)×5 × 0.85
![]() |
h0 MIN =√ 223960×22.14 = 18 см
1.25×1.2×1×1.2(100)×3.5×0.85
Принимаем высоту h = 25см ― высота консоли. Определяем высоту уступа свободного конца консоли, если нижняя грань наклонена под углом 45°
h1=h–ℓК×tgα = 25– 15× 1=10см
h1 > ⅓ h
10 > 8.3 условие выполняется
2.6 Расчет армирования консоли.
Определяем расчетный изгибающий момент:
М=1.25 × Q × (bK– Q)= 1.25×Q× a= 1.25 × 223960 × 22.14 = 61.98 к
2 × b × Rb × m b
Определим коэффициент AO:
А0 = М = 6198093 = 0.12
Rb × mb × bK × h20 17.0 × 0.85 × 35 ×322 ×100
h0 = h – 3 = 35 – 3 = 32 см
ξ = 0.94
η = 0.113
Определяем сечение необходимой продольной арматуры:
F = M = 6198093 = 2.55 см2
η × h0 × RS 0.113×32 × 360 × 100
Принимаем 4 стержня арматуры диаметром 9 мм. Назначаем отогнутую арматуру:
Fa = 0.002 × bK × h0 = 0.002 × 35 × 32 = 2.24 см2
Определяем арматуру Fa = 2.24 см2 — 8стержня диаметром 6 мм
Принимаем хомуты из стали A–III, диаметром 6 мм, шаг хомутов назначаем 5 см.
3. Расчет монолитного центрально нагруженного фундамента
Расчетная нагрузка на фундамент первого этажа:
∑ N1ЭТАЖА =3504 кН
b×h = 35×35
Определим нормативную нагрузку на фундамент по формуле:
NH = N1 = 3504/1.2 = 2950 кН
hСР
где hСР — средний коэффициент нагрузки
Определяем требуемую площадь фундамента
FTPФ = NH = 2950000 = 7.28 м2
R0 – γСР × hƒ 0.5 ×106 – 20 × 103× 2
γСР — средний удельный вес материала фундамента и грунта на его уступах равен: 20кН/м3
аСТОРОНА ФУНДАМЕНТА =√FСРФ = √ 7.28 = 2.453 м = (2.5 м) так как фундамент центрально нагруженный, принимаем его в квадратном плане, округляем до 2.5 м
Вычисляем наименьшую высоту фундамента из условий продавливания его колонной по поверхности пирамиды продавливания, при действии расчетной нагрузки:
Наименьшая высота фундамента:
σГР = N1 = 3504 481.3 кН/м2
FФ 7.28
σ — напряжение в основании фундамента от расчетной нагрузки
h0 MIN = ½ × √ N1 hK + bK
0.75 × Rbt × σTP 4
![]() |
h0 MIN = ½ × √ 2916 0.35 +0.35 = 2.25 см
0.75 × 1.3 × 1000 × 506.3 4
М0 MIN = h0 MIN + a3 = 2.25 + 0.04 = 2.29 м
Высота фундамента из условий заделки колонны:
H = 1.5 × hK + 25 = 1.5 × 35 + 25 = 77.5 см
![]() |
h0 MIN = ½ × √ N1 hK + bK
0.75 × Rbt × σTP 4
![]() |
h0 MIN = ½ × √ 2916 0.35 +0.35 = 2.25 см
0.75 × 1.3 × 1000 × 506.3 4
М0 MIN = h0 MIN + a3 = 2.25 + 0.04 = 2.29 м
Высота фундамента из условий заделки колонны:
H = 1.5 × hK + 25 = 1.5 × 35 + 25 = 77.5 см
Из конструктивных соображений, из условий жесткого защемления колонны в стакане высоту фундамента принимаем:
Н3 = hСТ + 20 = 77.5 + 20 = 97.5 см — высота фундамента.
При высоте фундамента менее 980 мм принимаем 3 ступени назначаем из условия обеспечения бетона достаточной прочности по поперечной силе.
Определяем рабочую высоту первой ступени по формуле:
h02 = 0.5 × σГР × (а – hK – 2 × h0) = 0.5 × 48.13 × (250 – 35 – 2×94) = 6.04 см
√ 2×Rbt×σГР √2×1.2 × 48.13 × (100)
h1= 26.04 + 4 = 30.04 см
Из конструктивных соображений принимаем высоту 300 м. Размеры второй и последующей ступени определяем, чтобы не произошло пересечение ступеней пирамиды продавливания.
Проверяем прочность фундамента на продавливание на поверхности пирамиды.
Р ≤ 0.75 × Rbt × h0 × bCP
bCP — среднее арифметическое между периметром верхнего и нижнего основания пирамиды продавливания в пределах h0
bСР = 4× (hК +h0) = 4 × (35 +94)= 516 cм
P = N1 – FОСН × σГР = 3504 × 103 – 49.7 × 103 × 48.13 = 111.2 кН
0.75 × 1.2 × (100) × 94 × 516 = 4365.1 кН.
Расчет арматуры фундамента. При расчете арматуры в фундаменте за расчетный момент принимаем изгибающий момент по сечением соответствующим уступам фундамента.
MI = 0.125 × Р × (а–а1)2 × b = 0.125×111.2×(2.5– 1.7)2 × 2.4 = 5337 кН
MII = 0.125 × Р × (а–а2)2 × b = 3755 кН
МIII =0.125 × Р × (а–а3)2 × b = 1425 кН
Определим необходимое количество арматуры в сечении фундамента:
Faℓ = МI = 5337 = 17.52 см2
0.9 × h ×RS 0.9 × 0.94 × 360
Faℓ = МII = 3755 = 12.32 см2
0.9 × h × RS 0.9 ×0.94 × 360
Faℓ = МIII = 1425 = 4.72 см2
0.9×h0×RS 0.9 × 0.94 × 360
Проверяем коэффициент армирования (не менее 0.1%)
M1 = 17.52 × 100 % = 0.53%
35 × 94
M1 = 12.32 × 100 % = 0.37%
35 × 94
M1 = 4.72 × 100 % = 0.14%
35 × 94
Верхнею ступень армируем конструктивно-горизонтальной сеткой из арматуры диаметром 8мм, класса А-I, устанавливаем через каждые 150 мм по высоте. Нижнею ступень армируем по стандартным нормам