Приборы батарейной системы зажигания




Индукционная катушка зажигания (рис. 3) имеет стальной корпус 6, в котором помещен кольцевой магнитопровод 5, концентрирующий магнитный поток, создаваемый первичной обмоткой. На сердечнике 2 намотана вторичная обмотка 4. Ряды провода при намотке изолируются друг от друга слоями конденсаторной бумаги. Сверху вторичную обмотку изолируют ла-котканью и кабельной бумагой. С целью лучшего охлаждения первичная обмотка 3 намотана на вторичную. С одной стороны в корпус индукционной катушки завальцован фарфоровый изолятор 1, а с другой – карболитовая крышка 8. Снаружи к корпусу катушки прикреплен вариатор 12. Все пустоты внутри корпуса заполнены изоляционной массой – битумным компаундом. От аккумуляторной батареи ток в первичную обмотку может поступать либо через клемму ВК-Б, либо через клемму ВК– в случае шунтирования вариатора. От клеммы 7 ток низкого напряжения поступает к прерывателю. Ток высокого напряжения от клеммы 9 отводится к распределителю.

Свеча зажигания служит для получения искрового разряда в камере сгорания, тепловое воздействие которого воспламеняет рабочую смесь. Условия работы свечи зажигания характеризуются значительными термическими, электрическими и механическими нагрузками. Изолятор 1 свечи зажигания (рис. 4) изготовлен из кристаллокорунда, который обладает высокой электрической и механической прочностью. Поверхность изолятора покрывают глазурью для уменьшения отложений на нем загрязнений и влаги, что повышает поверхностное сопротивление материала. Для обеспечения бесперебойной работы свечи зажигания необходимо поддерживать температуру ее теплового конуса 7 в пределах 700…800°С. При этой температуре нагар, отлагающийся на конусе и электродах свечи, сгорает и происходит ее самоочищение. При температуре теплового конуса ниже 500°С изолятор нижней части свечи покрывается нагаром, что приводит к снижению пробивного напряжения и к перебоям в работе двигателя из-за возможных пропусков зажигания рабочей смеси. Если температура теплового конуса выше 800…900 °С, может возникнуть так называемое калильное зажигание, когда рабочая смесь воспламеняется не от электрической искры, а от нагретых до высокой температуры электродов и поверхности изолятора.

Для поддержания необходимой температуры теплового конуса выпускаются свечи зажигания с различной степенью теплоотдачи. В двигателях с невысокой степенью сжатия применяют свечи зажигания с малой теплоотдачей, называемые горячими, а для двигателей с повышенной степенью сжатия – холодные свечи с большой теплоотдачей. Горячие свечи зажигания имеют удлиненную нижнюю часть изолятора и более широкую расточку корпуса, а холодные – укороченную нижнюю часть изолятора и узкую расточку корпуса. Чем меньше высота теплового конуса, тем холоднее свеча зажигания и больше допустимая степень сжатия, при которой обеспечивается работа двигателя без калильного зажигания.

Рис. 3. Индукционная катушка зажигания: 1 – фарфоровый изолятор; 2 – сердечник; 3 – первичная обмотка; 4 – вторичная обмотка; 5 – кольцевой магнитопровод; 6 – корпус; 7, 9, 10, 11 клеммы; 8 – карболитовая крышка; 12 – дополнительный резистор (вариатор) Рис. 4. Свеча зажигания: 1 – изолятор; 2 – контактная головка; 3 – стеклогерметик токопроводящий; 4 – корпус; 5, 6 – прокладки уплотнительные; 7 – тепловой конус; 8 – центральный электрод; 9 – боковой электрод («масса»)

Прерыватель-распределитель необходим для прерывания тока низкого напряжения и распределения тока высокого напряжения по цилиндрам двигателя.

В прерыватель входят корпус 10 (рис. 5, б), приводной валик 11, подвижный и неподвижный диски, кулачок 6 и регуляторы опережения зажигания. На подвижном диске 15 размещены изолированный рычажок 5 с подвижным контактом 7 и неподвижный контакт 8 со стойкой. Контакты прерывателя наплавлены тугоплавким металлом – вольфрамом. Подвижный контакт прерывателя прижимается к неподвижному пластинчатой пружиной.

Вращающийся кулачок 6 нажимает выступом на изолированный рычажок прерывателя и за один оборот размыкает контакты столько раз, сколько выступов на кулачке. Число выступов на кулачке равно числу цилиндров двигателя.

Сверху на корпусе прерывателя установлен распределитель (рис. 5, а). Он состоит из ротора 4 и крышки 1. Ротор изготовлен из карболита, а сверху в него вмонтирована контактная пластина. Он закреплен на выступе кулачка. Крышка распределителя тоже изготовлена из карболита. На ее наружной части по окружности выполнены гнезда с зажимами 2 для проводов высокого напряжения к искровым свечам зажигания. В центре крышки расположено центральное гнездо для крепления центрального провода высокого напряжения от катушки зажигания. Внутри крышки против центрального гнезда помещен угольный контакт 3 с пружиной для соединения провода с пластиной ротора, а против каждого гнезда по окружности расположены боковые контакты. Ротор распределителя, вращаясь вместе с кулачком, соединяет центральный контакт поочередно с боковыми, подавая ток высокого напряжения в свечи зажигания.

Рис. 5. Прерыватель-распределитель: а – распределитель; б – прерыватель; в – центробежный регулятор опережения зажигания

Кулачок 6 прерывателя соединен с приводным валиком 11 через центробежный регулятор (рис. 5, в). Валик приводится в действие от распределительного вала. Центробежный регулятор снабжен грузиками 19, на выступах которых размещается пластина 9 с косыми прорезями. С увеличением частоты вращения коленчатого вала грузики регулятора расходятся, и штифты грузиков, перемещаясь в прорезях пластины, поворачивают ее и соединенный с ней кулачок в сторону вращения ведущего валика. В результате кулачок размыкает контакты прерывателя и угол опережения зажигания увеличивается.

В зависимости от условий работы должен быть выбран оптимальный угол опережения зажигания, который влияет на тепловой режим, мощность и экономичность двигателя.

В прерывателе-распределителе, кроме центробежного, установлен вакуумный регулятор. Он служит для изменения угла опережения зажигания в зависимости от нагрузки двигателя. Полость вакуумного регулятора 17, в которой находится пружина 16, соединена трубкой со смесительной камерой карбюратора над дроссельной заслонкой, полость с другой стороны сообщается с атмосферой. К диафрагме 18 прикреплена тяга, которая связана с подвижным диском 15 прерывателя.

При уменьшении нагрузки двигателя дроссельная заслонка прикрывается, и под действием разрежения, передаваемого по трубке от карбюратора, диафрагма 18 перемещается с тягой влево (на рисунке) и поворачивает подвижную пластину прерывателя навстречу вращению кулачка. Угол опережения зажигания при этом увеличивается. С возрастанием нагрузки дроссельная заслонка открывается, разрежение в трубке падает, и под действием пружины 16 диафрагма перемещает тягу с подвижным диском в обратную сторону, уменьшая угол опережения зажигания.

Для изменения угла опережения зажигания вручную в зависимости от октанового числа топлива предназначен октан-корректор. Им изменяют угол опережения зажигания в пределах ±12° по углу поворота коленчатого вала. Чтобы изменить угол опережения зажигания, отпускают болт, крепящий пластины 13, и вращением регулировочных гаек 12 поворачивают корпус прерывателя-распределителя в необходимую сторону, после чего закрепляют крепящий болт. Одно деление шкалы октан-корректора соответствует изменению угла опережения зажигания на 2°.

Таким образом, в прерывателе-распределителе действуют независимо три устройства по изменению угла опережения зажигания: центробежный регулятор – поворачивает кулачок, вакуумный регулятор – подвижный диск прерывателя, октан-корректор – корпус.

Ток самоиндукции, возникающий в цепи низкого напряжения при разрыве контактов прерывателя, вызывает интенсивное искрение, разрушение контактов. Чтобы предотвратить вредное действие ЭДС самоиндукции, параллельно контактам прерывателя включают конденсатор, который заряжается в момент появления ЭДС самоиндукции. Разряжаясь в обратном направлении, он приводит к быстрому исчезновению тока в первичной цепи, а следовательно, и магнитного поля, благодаря чему напряжение во вторичной цепи повышается.

Перспективы развития батарейных систем зажигания. Система батарейного зажигания имеет простое устройство, поэтому ее широко применяют на автомобилях. Однако она имеет существенные недостатки: контакты прерывателя быстро изнашиваются вследствие подгорания, так как через них проходит ток значительной силы; сила тока высокого напряжения зависит от частоты вращения коленчатого вала; наблюдается ненадежное воспламенение смеси в высокооборотных многоцилиндровых двигателях. На современных автомобилях все чаще используют систему зажигания с применением транзисторов, которая сложнее батарейной, но имеет ряд преимуществ. Транзисторная система зажигания обеспечивает надежную и экономичную работу высокооборотных, многоцилиндровых двигателей с повышенной степенью сжатия. Контактно-транзисторная система зажигания отличается от обычной батарейной тем, что между контактами прерывателя-распределителя и катушкой зажигания включается транзисторный коммутатор.

Зажигание от магнето

Система зажигания от магнето отличается от батарейной системы зажигания автономностью, стабильностью работы при больших частотах вращения коленчатого вала, компактностью. Приборы системы кроме проводов высокого напряжения и свечей зажигания объединены в одном агрегате – магнето. Источник тока, трансформатор, прерыватель и распределитель конструктивно скомпонованы в одном корпусе. В зависимости от магнитной схемы применяются магнето с вращающимся магнитом или магнето с вращающимся магнитным коммутатором. Магнит и обмотки в этом случае неподвижны. В системах зажигания пусковых двухтактных карбюраторных двигателей, в двигателях различного мотоинструмента, как правило, применяются магнето с вращающимся магнитом, так как они более просты по конструкции и надежны в эксплуатации ввиду отсутствия скользящих контактов. Принципиальная схема зажигания от магнето с вращающимся магнитом приведена на рис. 6.

Якорь 1 представляет собой магнит, приводимый во вращение от коленчатого вала двигателя. На сердечнике 6 расположены первичная 4 и вторичная 3 обмотки. Один конец первичной обмотки припаян к сердечнику, а второй соединен с неподвижным контактом прерывателя 10. Вторичная обмотка одним концом соединена с первичной, а другим – через контакт 8 с выводным контактом 9, от которого по проводу высокого напряжения ток подводится к свече зажигания 7. Кулачок 12 прерывателя вращается вместе с якорем. Параллельно контактам прерывателя включен конденсатор 13. Выключатель 11 служит для замыкания на массу вторичной обмотки, минуя прерыватель, при выключении зажигания. Искровой разрядник 5 предохраняет изоляцию обмоток магнето от повреждения (пробоя) при значительном возрастании вторичного напряжения в случае отсоединения провода высокого напряжения от свечи зажигания или ее неисправности.

Рис. 1. Принципиальная схема системы зажигания от магнето: 1 – якорь; 2 – стойка;
3 – вторичная обмотка; 4 – первичная обмотка; 5 – искровой разрядник; 6 – сердечник;
7 – свеча зажигания; 8 – контакт; 9 – выводной контакт; 10 – неподвижный контакт прерывателя; 11 – выключатель; 12 – кулачок; 13 – конденсатор

Рабочий процесс. При вращении якоря 1 изменяется магнитный поток, передаваемый от одного полюса постоянного магнита к другому через сердечник 6. Число изменений магнитного потока за один оборот якоря будет равно числу пар полюсов магнита. Изменяющийся магнитный поток индуктирует в первичной и вторичной обмотках ток, максимальное значение которого соответствует моменту наибольшей скорости изменения магнитного потока, проходящего через сердечник (два раза за один оборот двухполюсного магнита). При вращении магнита с большой скоростью индуктируемая во вторичной обмотке ЭДС составляет 2000…3000 В, что значительно ниже пробивного напряжения. Кроме того, влияние индуктивности первичной обмотки приводит к тому, что момент достижения максимального значения тока в первичной обмотке не совпадает с моментом достижения максимальной ЭДС во вторичной обмотке. Наибольшего значения ток в первичной цепи достигает в момент, когда якорь магнето поворачивается относительно своего нейтрального положения (90 и 270°) на угол 7…12°. С целью повышения вторичного напряжения и получения искрового разряда между электродами свечи зажигания в строго определенное время в первичную цепь магнето включен прерыватель. Замыкание первичной цепи происходит в момент, когда ЭДС в первичной обмотке близка к нулю, а размыкание – когда ток в ней имеет максимальное значение. При размыкании контактов прерывателя энергия магнитного поля первичной обмотки превращается в электрическую энергию искры, образующейся между электродами свечи зажигания. Угол, на который поворачивается якорь магнето от своего центрального положения к моменту размыкания контактов прерывателя, называют абрисом. Значение этого угла зависит от типа магнето и определяется опытным путем. Для изменения угла опережения зажигания в зависимости от скоростного режима работы двигателя в приводе магнето предусматривается специальная центробежная муфта.

 

Рекомендуемая литература:

1. В.А. Родичев. Тракторы и автомобили – М.: Агропроимиздат, 1986. – 251с.

2. Г.М. Анисимов. Лесные машины – М.: Лесная промышленность, 1989 – 512 с.

3. А.Ф. Тихонов, А.В. Жуков. Лесные машины – Мн.: вышэйшая школа, 1984. – 278 с.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-07 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: