Терминология теории систем




Министерство образования Украины

Приднепровская государственная академия строительства и архитектуры

Кафедра автоматики

РЕФЕРАТ

Курс: основы системного анализа.

Тема: терминология теории систем. Классификация систем. Закономерности систем.

Выполнил: Шиманов Д. В.

Проверил: Бодня В. С.

Днепропетровск 2002

Основные задачи и направления развития теории систем.

Системный подход - это направление методологии научного познания и социальной практики, в основе которого лежит исследование объектов как систем.

К числу задач, решаемых теорией систем, относятся: опреде­ление общей структуры системы; организация взаимодействия между подсистемами и элементами; учет влияния внешней среды.

Выбор оптимальной структуры системы; выбор оптимальных алгоритмов функционирования системы.

Проектирование больших систем обычно делят на две стадии:

макропроектирование (внешнее проектирование), в процессе которого решаются функционально-структурные вопросы системы в целом, и микропроектирование (внутреннее проектирование), связанное с разработкой элементов системы как физических еди­ниц оборудования и с получением технических решений по основ­ным элементам (их конструкции и параметры, режимы эксплу­атации). В соответствии с таким делением процесса проектирова­ния больших систем в теории систем рассматриваются методы, связанные с макропроектированием сложных систем.

Основные понятия теории систем

В первой главе изложены основные понятия и определения теории систем. Приведена классификация систем с различных точек зрения, рассмотрены ряд закономерностей и даны опре­деления и сущность понятий «системный подход», «системный анализ» и «системные исследования».

Терминология теории систем

Определение понятия «система». В настоящее время нет един­ства в определении понятия «система». В первых определениях в той или иной форме говорилось о том, что система - это элементы и связи (отношения) между ними. Например, основопо­ложник теории систем Людвиг фон Берталанфи [25] определял систему как комплекс взаимодействующих элементов или как совокупность элементов, находящихся в определенных отноше­ниях друг с другом и со средой. А. Холл [12] определяет систему как множество предметов вместе со связями между предметами и между их признаками. Ведутся дискуссии, какой термин- «от­ношение» или «связь» - лучше употреблять.

Позднее в определениях системы появляется понятие цели. Так, в «Философском словаре» система определяется как «сово­купность элементов, находящихся в отношениях и связях между собой определенным образом и образующих некоторое целост­ное единство».

В последнее время в определение понятия системы наряду с элементами, связями и их свойствами и целями начинают включать наблюдателя, хотя впервые на необходимость учета взаимодействия между исследователем и изучаемой системой указал один из основоположников кибернетики У. Р. Эшби [27].

М. Масарович и Я. Такахара в книге «Общая теория систем» считают, что система - «формальная взаимосвязь между на­блюдаемыми признаками и свойствами».

Таким образом, в зависимости от количества учитываемых факторов и степени абстрактности определение понятия «систе­ма» можно представить в следующей символьной форме. Каждое определение обозначим буквой D (от лат. definitions) и поряд­ковым номером, совпадающим с количеством учитываемых в определении факторов.

D1. Система есть нечто целое:

S=A (1, 0).

Это определение выражает факт существования и целост­ность. Двоичное суждение А (1,0) отображает наличие или отсут­ствие этих качеств.

D2. Система есть организованное множество (Темников Ф. Е. [23]):

S =(орг, M),

где орг - оператор организации; М - множество.

D3. Система есть множество вещей, свойств и отношений (Уемов А. И. [24]):

S=({m}.{n}.{r]),

где m - вещи, n - свойства, r - отношения.

D4. Система есть множество элементов, образующих струк­туру и обеспечивающих определенное поведение в условиях окру­жающей среды:

S=(e, ST, BE, Е),

где e - элементы, ST - структура, BE - поведение, Е - среда.

D5. Система есть множество входов, множество выходов, множество состояний, характеризуемых оператором переходов и оператором выходов:

S=(X, Y, Z, H, G),

где Х - входы, Y - выходы, Z - состояния, Н - оператор пе­реходов, G - оператор выходов. Это определение учитывает все основные компоненты, рассматриваемые в автоматике.

D6. Это шестичленное определение, как и последующие, труд­но сформулировать в словах. Оно соответствует уровню биоси­стем и учитывает генетическое (родовое) начало GN, условия существования KD, обменные явления MB, развитие EV, функци­онирование FC и репродукцию (воспроизведения) RP:

S=(GN, KD, MB, EV, FC, RP).

D7. Это определение оперирует понятиями модели F, связи SC, пересчета R, самообучения FL, самоорганизации FO, прово­димости связей СО и возбуждения моделей JN:

S=(F, SC, R, FL, FO, CO, JN).

Данное определение удобно при нейрокибернетических исследо­ваниях.

D8. Если определение D5 дополнить фактором времени и фун­кциональными связями, то получим определение системы, кото­рым обычно оперируют в теории автоматического управления:

S=(T, X, Y, Z, u, V, h, j),

где T - время, Х - входы, Y - выходы, Z - состояния, u - класс операторов на выходе, V - значения операторов на выхо­де, h - функциональная связь в уравнении y(t2)=h[x(t1), z(t1), t2], j - функциональная связь в уравнении z(t2)=j[x(t1), z(t1), t2].

D9. Для организационных систем удобно в определении систе­мы учитывать следующее:

S=(PL, RO, RJ, EX, PR, DT, SV, RD, EF),

где PL - цели и планы, RO - внешние ресурсы, RJ - внутрен­ние ресурсы, EX - исполнители, PR - процесс, DT- помехи, SV - контроль, RD - управление, EF - эффект.

Последовательность определений можно продолжить до DN (N=9, 10, 11,...), в котором учитывалось бы такое количество элементов, связей и действий в реальной системе, которое необ­ходимо для решаемой задачи, для достижения поставленной цели. В качестве «рабочего» определения понятия системы в ли­тературе по теории систем часто рассматривается следующее:

система - множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целост­ность, единство.

Рассмотрим основные понятия, характеризующие строение и функционирование систем.

Элемент. Под элементом принято понимать простейшую не­делимую часть системы. Ответ на вопрос, что является такой частью, может быть неоднозначным и зависит от цели рассмотрения объекта как системы, от точки зрения на него или от ас­пекта его изучения. Таким образом, элемент - это предел члене­ния системы с точек зрения решения конкретной задачи и постав­ленной цели. Систему можно расчленить на элементы различ­ными способами в зависимости от формулировки цели и ее уточнения в процессе исследования.

Подсистема. Система может быть разделена на элементы не сразу, а последовательным расчленением на подсистемы, кото­рые представляют собой компоненты более крупные, чем элемен­ты, и в то же время более детальные, чем система в целом. Возможность деления системы на подсистемы связана с вычлене­нием совокупностей взаимосвязанных элементов, способных вы­полнять относительно независимые функции, подцели, направ­ленные на достижение общей цели системы. Названием «подси­стема» подчеркивается, что такая часть должна обладать свойст­вами системы (в частности, свойством целостности). Этим под­система отличается от простой группы элементов, для которой не сформулирована подцель и не выполняются свойства целост­ности (для такой группы используется название «компоненты»). Например, подсистемы АСУ, подсистемы пассажирского транс­порта крупного города.

Структура. Это понятие происходит от латинского слова stru­cture, означающего строение, расположение, порядок. Структу­ра отражает наиболее существенные взаимоотношения между элементами иих группами (компонентами, подсистемами), кото­рые мало меняются при изменениях в системе и обеспечивают существование системы и ее основных свойств. Структура - это совокупность элементов и связей между ними. Структура может быть представлена графически, в виде теоретико-множественных описаний, матриц, графов и других языков моделирования струк­тур.

Структуру часто представляют в виде иерархии. Иерархия - это упорядоченность компонентов по степени важности (многоступенчатость, служебная лестница). Между уровнями иерархи­ческой структуры могут существовать взаимоотношения строго­го подчинения компонентов (узлов) нижележащего уровня одно­му из компонентов вышележащего уровня, т. е. отношения так называемого древовидного порядка. Такие иерархии называют сильными или иерархиями типа «дерева». Они имеют ряд особен­ностей, делающих их удобным средством представления систем управления. Однако могут быть связи и в пределах одного уров­ня иерархии. Один и тот же узел нижележащего уровня может быть одновременно подчинен нескольким узлам вышележащего уровня. Такие структуры называют иерархическими структурами со слабыми связями. Между уровнями иерархической структуры могут существовать и более сложные взаимоотношения, напри­мер, типа «страт», «слоев», «эшелонов», которые детально рас­смотрены в [6]. Примеры иерархических структур: энергетические системы, АСУ, государственный аппарат.

Связь. Понятие «связь» входит в любое определение системы наряду с понятием «элемент» и обеспечивает возникновение и со­хранение структуры и целостных свойств системы. Это понятие характеризует одновременно и строение (статику), и функциони­рование (динамику) системы.

Связь характеризуется направлением, силой и характером (или видом). По первым двум признакам связи можно разделить на направленные и ненаправленные, сильные и слабые, а по характеру - на связи подчинения, генетические, равноправные (или безразличные), связи управления. Связи можно разделить также по месту приложения (внутренние и внешние), по направленности процессов в системе в целом или в отдельных ее подсистемах (прямые и обратные). Связи в конкретных системах могут быть одновременно охарактеризованы несколькими из названных признаков.

Важную роль в системах играет понятие «обратной связи». Это понятие, легко иллюстрируемое на примерах технических устройств, не всегда можно применить в организационных систе­мах. Исследованию этого понятия большое внимание уделяется в кибернетике, в которой изучается возможность перенесения механизмов обратной связи, характерных для объектов одной физической природы, на объекты другой природы. Обратная связь является основой саморегулирования и развития систем, приспособления их к изменяющимся условиям существования.

Состояние. Понятием «состояние» обычно характеризуют мгно­венную фотографию, «срез» системы, остановку в ее развитии. Его определяют либо через входные воздействия и выходные сигналы (результаты), либо через макропараметры, макросвойст­ва системы (например, давление, скорость, ускорение - для фи­зических систем; производительность, себестоимость продукции, прибыль - для экономических систем).

Более полно состояние можно определить, если рассмотреть элементы e (или компоненты, функциональные блоки), определя­ющие состояние, учесть, что «входы» можно разделить на упра­вляющие u и возмущающие х (неконтролируемые) и что «выхо­ды» (выходные результаты, сигналы) зависят от e, u и х, т. е. zt=f(et, ut, хt). Тогда в зависимости от задачи состояние может быть определено как {e, u}, {e, u, z} или {e, х, и, z}.

Таким образом, состояние - это множество существенных свойств, которыми система обладает в данный момент времени.

Поведение. Если система способна переходить из одного со­стояния в другое (например, z1-z2-z3), то говорят, что она обладает поведением. Этим понятием пользуются, когда неиз­вестны закономерности переходов из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и вы­ясняют его закономерности. С учетом введенных выше обозначе­ний поведение можно представить как функцию zt=f(zt-1, xt, иt).

Внешняя среда. Под внешней средой понимается множество элементов, которые не входят в систему, но изменение их состо­яния вызывает изменение поведения системы.

Модель. Под моделью системы понимается описание систе­мы, отображающее определенную группу ее свойств. Углубление описания - детализация модели. Создание модели системы по­зволяет предсказывать ее поведение в определенном диапазоне условий.

Модель функционирования (поведения) системы - это мо­дель, предсказывающая изменение состояния системы во време­ни, например: натурные (аналоговые), электрические, машинные на ЭВМ и др.

Равновесие - это способность системы в отсутствие внешних возмущающих воздействий (или при постоянных воздействиях) сохранить свое состояние сколь угодно долго.

Устойчивость. Под устойчивостью понимается способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних возмущающих воздействий. Эта способность обычно присуща системам при постоянном ut, если только отклонения не превы­шают некоторого предела.

Состояние равновесия, в которое система способна возвра­щаться, по аналогии с техническими устройствами называют ус­тойчивым состоянием равновесия. Равновесие и устойчивость в экономических и организационных системах - гораздо более сложные понятия, чем в технике, и до недавнего времениимипользовались только для некоторого предварительного описа­тельного представления о системе. В последнее время появились попытки формализованного отображения этих процессов и в сложных организационных системах, помогающие выявлять па­раметры, влияющие на их протекание и взаимосвязь.

Развитие. Исследованию процесса развития, соотношения процессов развития и устойчивости, изучению механизмов, лежа­щих в их основе, уделяют в кибернетике и теории систем большое внимание. Понятие развития помогает объяснить сложные тер­модинамические и информационные процессы в природе и обще­стве.

Цель. Применение понятия «цель» и связанных с ним понятий целенаправленности, целеустремленности, целесообразности сде­рживается трудностью их однозначного толкования в конкрет­ных условиях. Это связано с тем, что процесс целеобразования и соответствующий ему процесс обоснования целей в организаци­онных системах весьма сложен и не до конца изучен. Его ис­следованию большое внимание уделяется в психологии, филосо­фии, кибернетике. В Большой Советской Энциклопедии цель определяется как «заранее мыслимый результат сознательной деятельности человека». В практических применениях цель - это идеальное устремление, которое позволяет коллективу увидеть перспективы или реальные возможности, обеспечивающие свое­временность завершения очередного этапа на пути к идеальным устремлениям.

В настоящее время в связи с усилением программно-целевых принципов в планировании исследованию закономерностей це­леобразования и представления целей в конкретных условиях уделяется все больше внимания. Например: энергетическая про­грамма, продовольственная программа, жилищная программа, программа перехода к рыночной экономике.

 

Классификация систем

Системы разделяются на классы по различным признакам, и в зависимости от решаемой задачи можно выбрать разные принци­пы классификации. При этом систему можно охарактеризовать одним или несколькими признаками.

Системы классифицируются следующим образом:

по виду отображаемого объекта - технические, биоло­гические и др.;

по виду научного направления - математические, физи­ческие, химические и т. п.;

по виду формализованного аппарата представления системы — детерминированные и стохастические;

по типу целеустремленности - открытые и закрытые;

по сложности структуры и поведения - простые и сложные;

по степени организованности - хорошо организован­ные, плохо организованные (диффузные), самоорганизующиеся системы.

Рассмотрим подробно два последних вида классификации систем.

Хорошо организованные системы. Представить анализируемый объект или процесс в виде «хорошо организованной системы» означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты, т. е. определить связи между всеми компонентами и целями системы, с точки зрения которых рассматривается объект или ради достижения которых создается система. Проблемная ситуация может быть описана в виде математического выражения, связывающего цель со сред­ствами, т. е. в виде критерия эффективности, критерия функци­онирования системы, который может быть представлен сложным уравнением или системой уравнений. Решение задачи при пред­ставлении ее в виде хорошо организованной системы осуществ­ляется аналитическими методами формализованного представле­ния системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравне­ний, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

Для отображения объекта в виде хорошо организованной системы необходимо выделять существенные и не учитывать относительно несущественные для данной цели рассмотрения компоненты: например, при рассмотрении солнечной системы не учитывать метеориты, астероиды и другие мелкие по сравнению с ранетами элементы межпланетного пространства.

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детермини­рованное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. По­пытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или мно­гокритериальных задач плохо удаются: они требуют недопусти­мо больших затрат времени, практически нереализуемы и неадек­ватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде «плохо организованной или диффузной системы» не ста­вится задача определить все учитываемые компоненты, их свой­ства и связи между ними и целями системы. Система харак­теризуется некоторым набором макропараметров и закономер­ностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенной с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой довери­тельной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслужива­ния, определении численности штатов на предприятиях и учреж­дениях, исследовании документальных потоков информации в си­стемах управления и т. д.

Самоорганизующиеся системы. Отображение объекта в виде самоорганизующейся системы - это подход, позволяющий ис­следовать наименее изученные объекты и процессы. Самооргани­зующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных па­раметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к из­меняющимся условиям среды, изменять структуру при взаимо­действии системы со средой, сохраняя при этом свойства целост­ности; способность формировать возможные варианты поведе­ния и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприс­посабливающиеся системы, самовосстанавливающиеся, самовос­производящиеся и другие подклассы, соответствующие различ­ным свойствам развивающихся систем.

Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т. е. в тех системах, где обязательно имеется человеческий фактор.

При применении отображения объекта в виде самоорганизу­ющейся системы задачи определения целей и выбора средств, как правило, разделяются. При этом задача выбора целей может быть, в свою очередь, описана в виде самоорганизующейся систе­мы, т. е. структура функциональной части АСУ, структура целей, плана может разбиваться так же, как и структура обеспечива­ющей части АСУ (комплекс технических средств АСУ) или ор­ганизационная структура системы управления.

Большинство примеров применения системного анализа ос­новано на представлении объектов в виде самоорганизующихся систем.

Определение большое системы. Существует ряд подходов к разделению систем по сложности. В частности, Г. Н. Поваровв зависимости от числа элементов, входящих в систему, выделяет четыре класса систем: малые системы (10…103 элементов), слож­ные (103…1O7 элементов), ультрасложные (107...1030 элементов), суперсистемы (1030...10200 элементов). Так как понятие элемента возникает относительно задачи и цели исследования системы, то и данное определение сложности является относительным, а не абсолютным.

Английский кибернетик С. Бир классифицирует все кибер­нетические системы на простые и сложные в зависимости от способа описания: детерминированного или теоретико-вероят­ностного. А. И. Берг определяет сложную систему как систему, которую можно описать не менее чем на двух различных мате­матических языках (например, с помощью теории дифференци­альных уравнений и алгебры Буля).

Очень часто сложными системами называют системы, кото­рые нельзя корректно описать математически, либо потому, что в системе имеется очень большое число элементов, неизвестным образом связанных друг с другом, либо неизвестна природа явлений, протекающих в системе. Все это свидетельствует об отсутствии единого определения сложности системы.

При разработке сложных систем возникают проблемы, от­носящиеся не только к свойствам их составляющих элементов и подсистем, но также к закономерностям функционирования системы в целом. При этом появляется широкий круг специфи­ческих задач, таких, как определение общей структуры системы; организация взаимодействия между элементами и подсистемами; учет влияния внешней среды; выбор оптимальных режимов функ­ционирования системы; оптимальное управление системой и др.

Чем сложнее система, тем большее внимание уделяется этим вопросам. Математической базой исследования сложных систем является теория систем. В теории систем большой системой (сложной, системой большого масштаба. Large Scale Systems) называют систему, если она состоит из большого числа взаимо­связанных и взаимодействующих между собой элементов и спосо­бна выполнять сложную функцию.

Четкой границы, отделяющей простые системы от больших, нет. Деление это условное и возникло из-за появления систем, имеющих в своем составе совокупность подсистем с наличием функциональной избыточности. Простая система может нахо­диться только в двух состояниях: состоянии работоспособности (исправном) и состоянии отказа (неисправном). При отказе эле­мента простая система либо полностью прекращает выполнение своей функции, либо продолжает ее выполнение в полном объ­еме, если отказавший элемент резервирован. Большая система при отказе отдельных элементов и даже целых подсистем не всегда теряет работоспособность, зачастую только снижаются характеристики ее эффективности. Это свойство больших систем обусловлено их функциональной избыточностью и, в свою оче­редь, затрудняет формулировку понятия «отказ» системы.

Под большой системой понимается совокупность материаль­ных ресурсов, средств сбора, передачи и обработки информации, людей-операторов, занятых на обслуживании этих средств, и лю­дей-руководителей, облеченных надлежащими правами и ответ­ственностью для принятия решений. Материальные ресурсы — это сырье, материалы, полуфабрикаты, денежные средства, раз­личные виды энергии, станки, оборудование, люди, занятые на выпуске продукции, и т. д. Все указанные элементы ресурсов объединены с помощью некоторой системы связей, которые по заданным правилам определяют процесс взаимодействия между элементами для достижения общей цели или группы целей.

Примеры больших систем: информационная система; пасса­жирский транспорт крупного города; производственный процесс;

система управления полетом крупного аэродрома; энергетичес­кая система и др.

Характерные особенности больших систем. К ним относятся:

большое число элементов в системе (сложность системы);

взаимосвязь и взаимодействие между элементами;

иерархичность структуры управления;

обязательное наличие человека в контуре управления, на ко­торого возлагается часть наиболее ответственных функций упра­вления.

Сложность системы. Пусть имеется совокупность из п эле­ментов. Если они изолированы, не связаны между собой, то эти п элементов еще не являются системой. Для изучения этой сово­купности достаточно провести не более чем п исследований. В общем случае в системе связь элемента А с элементом Б не эк­вивалентна связи элемента Б с элементом А, и поэтому необхо­димо рассматривать п(п- 1) связей. Если характеризовать состояние каждой связи наличием или отсутствием в данный момент, то общее число состояний (для такого самого простого поведе­ния) системы будет равно 2n(n-1). Даже при небольших п для больших систем (БС) это фантастическое число. Например, пусть п= 10. Число связей n(n-1)=90. Число состояний 290=l,3*1027. Поэтому изучение БС путем непосредственного обследования ее состояний оказывается весьма громоздким. Следовательно, необ­ходимо использовать ЭВМ и разрабатывать методы, позволяю­щие сократить число обследуемых состояний БС. Сокращение чис­ла состояний БС - первый шаг в формальном описании систем.

Взаимосвязь и взаимодействие между элементами в БС. Разделение системы на элементы и подсистемы может быть произведено различными способами. Элементом системы будем называть совокупность различных технических средств и людей, которые при данном исследовании рассматриваются как одно неделимое целое.

Расчленение системы на элементы - второй шаг при фор­мальном описании системы. Внутренняя структура элемента при этом не является предметом исследования. Имеют значение толь­ко свойства, определяющие его взаимодействие с другими элеме­нтами системы и оказывающие влияние на характер системы в целом.

Формально любая совокупность элементов системы вместе со связями между ними может рассматриваться как ее подсистема. Использование этого понятия оказывается особенно плодотвор­ным в тех случаях, когда в качестве подсистем фигурируют некоторые более или менее самостоятельно функционирующие части системы.

В системе управления полетом самолета можно выделить следующие подсистемы:

систему дальнего обнаружения и управления;

систему многоканальной дальней связи;

многоканальную систему слепой посадки и взлета самолета;

систему диспетчеризации;

бортовую аппаратуру самолета.

Подсистемы БС сами могут быть большими системами, кото­рые легко расчленить на соответствующие подсистемы. Так, большую систему «Городской пассажирский транспорт» по ви­дам транспорта можно расчленить на подсистемы: троллейбусы, автобусы, трамвай, метрополитен, такси. Каждая из этих подси­стем, в свою очередь, является БС. Так, таксомоторное хозяйство состоит из: сотен (тысяч) автомобилей и шоферов, нескольких автопарков, средств технического обслуживания и управления.

Выделение подсистем - третий важный шаг при формальном описании БС.

Иерархичность структуры управления. Управление в БС может быть централизованным и децентрализованным. Централизованное управление (рис. 1.1а), предполагает концент­рацию функции управления в одном центре БС. Децентрализо­ванное - распределение функции управления по отдельным эле­ментам БС (рис. 1.1, б). Типичные БС, встречающиеся на практи­ке, относятся, как правило, к промежуточному типу, когда сте­пень централизации находится между двумя крайними случаями:

чисто централизованным и чисто децентрализованным.

Децентрализация управления позволяет сократить объем пе­рерабатываемой информации, однако в ряде случаев это приво­дит к снижению качества управления.

Для управления с иерархичной структурой управления харак­терно наличие нескольких уровней управления (рис. 1.1, в).

Примеры иерархической структуры управления: администра­тивное управление, управление в вооруженных силах, снабжение.

Обязательное наличие человека в контуре управле­ния. Поскольку в БС обязательно наличие человека, она являет­ся всегда эргатической системой. Часть функций управления вы­полняется человеком. Эта особенность БС связана с целым ря­дом факторов:

участие человека в БС требует, чтобы управление учитывало социальные, психологические, моральные и физиологические фа­кторы, которые не поддаются формализации и могут быть уч­тены в системах управления только человеком;

необходимость в ряде случаев принимать решение на основе неполной информации, учитывать неформализуемые факторы - все это должен делать человек с большим опытом, хорошо понимающий задачи, стоящие перед системой;

могут быть системы, в которых нет отношений подчинен­ности, а существуют лишь отношения взаимодействия (межгосу­дарственные отношения, отношения предприятий «по горизон­тали»).

 

Закономерности систем

Целостность. Закономерность целостности проявляется в си­стеме в возникновении новых интегративных качеств, не свойст­венных образующим ее компонентам. Чтобы глубже понять за­кономерность целостности, необходимо рассмотреть две ее сто­роны: 1) свойства системы (целого) не являются суммой свойств элементов или частей (несводимость целого к простой сумме частей); 2) свойства системы (целого) зависят от свойств элемен­тов, частей (изменение в одной части вызывает изменение во всех остальных частях и во всей системе).

Существенным проявлением закономерности целостности яв­ляются новые взаимоотношения системы как целого со средой, отличные от взаимодействия с ней отдельных элементов.

Свойство целостности связано с целью, для выполнения кото­рой предназначена система.

Весьма актуальным является оценка степени целостности си­стемы при переходе из одного состояния в другое. В связи с этим возникает двойственное отношение к закономерности целостно­сти. Ее называют физической аддитивностью, независимостью, суммативностью, обособленностью. Свойство физической адди­тивности проявляется у системы, как бы распавшейся на незави­симые элементы. Строго говоря, любая система находится всегда между крайними точками как бы условной шкалы: абсолютная целостность - абсолютная аддитивность, и рассматриваемый этап развития системы можно охарактеризовать степенью прояв­ления в ней одного или другого свойства и тенденцией к его нарастанию или уменьшению.

Для оценки этих явлений А. Холл ввел такие закономерности, как «прогрессирующая факторизация» (стремление системы к со­стоянию со все более независимыми элементами) и «прогрес­сирующая систематизация» (стремление системы к уменьшению самостоятельности элементов, т. е. к большей целостности). Су­ществуют методы введения сравнительных количественных оценок степени целостности, коэффициента использования элемен­тов в целом с точки зрения определенной цели.

Интегративность. Этот термин часто употребляют как сино­ним целостности. Однако им подчеркивают интерес не к внеш­ним факторам проявления целостности, а к более глубоким причинам формирования этого свойства и, главное, - к его со­хранению. Интегративными называют системообразующие, системоохраняющие факторы, важными среди которых являются неоднородность и противоречивость ее элементов.

Коммуникативность. Эта закономерность составляет основу определения системы, предложенного В. Н. Садовским и Э. Г, Юдиным в книге «Исследования по общей теории систем». Систе­ма образует особое единство со средой; как правило, любая исследуемая система представляет собой элемент системы более высокого порядка; элементы любой исследуемой системы, в свою очередь, обычно выступают как системы более низкого порядка.

Иными словами, система не изолирована, она связана множе­ством коммуникаций со средой, которая не однородна, а пред­ставляет собой сложное образование, содержит надсистему (или даже надсистемы), задающую требования и ограничения исследу­емой системе, подсистемы и системы одного уровня с рассмат­риваемой.

Иерархичность. Рассмотрим иерархичность как закономер­ность построения всего мира и любой выделенной из него систе­мы. Иерархическая упорядоченность пронизывает все, начиная от атомно-молекулярного уровня и кончая человеческим обще­ством. Иерархичность как закономерность заключается в том, что закономерность целостности проявляется на каждом уровне иерархии. Благодаря этому на каждом уровне возникают новые свойства, которые не могут быть выведены как сумма свойств элементов. При этом важно, что не только объединение элемен­тов в каждом узле приводит к появлению новых свойств, кото­рых у них не было, и утрате некоторых свойств элементов, но и что каждый член иерархии приобретает новые свойства, отсут­ствующие у него в изолированном состоянии.

Таким образом, на каждом уровне иерархии происходят сложные качественные изменения, которые не всегда могут быть представлены и объяснены. Но именно благодаря этой осо­бенности рассматриваемая закономерность приводит к интерес­ным следствиям. Во-первых, с помощью иерархических пред­ставлений можно отображать системы с неопределенностью. Во-вторых, построение иерархической структуры зависит от це­ли: для многоцелевых ситуаций можно построить несколько иерархических структур, соответствующих разным условиям, и при этом в разных структурах могут принимать участие одни и те же компоненты. В-третьих, даже при одной и той же цели, если поручить формирование иерархической структуры разным исследователям, то в зависимости от их предшествующе­го опыта, квалификации и знания системы они могут получить разные иерархические структуры, т. е. по-разному разрешить качественные изменения на каждом уровне иерархии.

Эквнфинальвостъ. Это одна из наименее исследованных зако­номерностей. Она характеризует предельные возможности си­стем определенного класса сложности. Л. фон Берталанфи, пред­ложивший эт



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: