Распространение пламени по газопаровоздушным смесям




 

Возникновение горения или зажигание - только начальная стадия процесса горения, его инициирование. Данная стадия, безусловно, важна с точки зрения профилактики пожаров и взрывов. Но предотвратить их не всегда удается, поэтому для практических работников пожарной охраны большое значение имеет возможность прогнозирования динамики развития горения, а именно, в каком режиме и с какими параметрами будет развиваться пожар или взрыв на реальных объектах. Кроме того, в практической деятельности приходится сталкиваться с необходимостью реставрации картины развития уже происшедших пожаров и взрывов. Для этого необходимо знать основные закономерности процессов распространения, развития горения. Эти сведения необходимы также для правильного выбора наиболее эффективного вида и способа применения огнетушащего средства в конкретных условиях.

Наиболее простая схема горения – горение газов и паров. Смешиваясь с окислителем (в большинстве случаев кислородом воздуха), они образуют горючую смесь. Как было сказано выше, горение может быть диффузионным и кинетическим.

При диффузионном горении газов распространение пламени происходит по мере смешивания горючего с окислителем, это мы разбирали выше.

 

При кинетическом горении газов, распространение пламени может происходить по механизму дефлаграции (нормальное горение) и детонации.

Нормальное или дефлаграционное горение - это распространение пламени по однородной горючей среде, при котором фронт пламени движется вследствие ее послойного разогрева по механизму теплопроводности.

Дефлаграционное пламя распространяется с небольшой скоростью, порядка нескольких метров или десятков метров в секунду. Передача теплоты в этом случае осуществляется послойно по механизму теплопроводности.

При дефлаграционном горении пламя распространяется со скоростью, называемой нормальной скоростью распространения пламени.

Нормальная скорость распространения пламени uн - это минимальная скорость, с которой пламя может распространятся в горючей среде по нормали к своему фронту. Размерность ее [м/с]. Нормальная скорость является важной характеристикой горючей смеси.

Вектор нормальной скорости распространения пламени всегда направлен в строну горючей смеси.

Форма фронта пламени, возникшего от небольшого источника зажигания в неподвижной однородной среде - сферическая, а в ряде случаев, например, при горении в трубах, может быть плоской. Наблюдаемая в реальных условиях скорость распространения пламени относительно неподвижных предметов (стенки трубы, сосуда и т.п.), называется видимой скоростью.

В зависимости от направления и величины линейной скорости v потока газовой смеси фронт пламени может быть неподвижным (стационарным) или движущимся. Стационарное пламя возникает в тех случаях, когда горючая смесь движется навстречу фронту пламени с такой же скоростью, т.е. v = uв. Типичным примером стационарного пламени являются пламена факельных горелок в промышленных печах, лабораторных горелок Бунзена, Теклю и др. (рис.1.3).

 

 

В
φ
А
С
Гор.+Ок.

Рис. 1.3 Схема распространения пламени в горелке Бунзена

 

В них видимая скорость пламени равна скорости горючей смеси:

 

v0 = uв = V0/ S, (1)

 

где v0 - скорость горючей смеси, м/с;

V0 - расход смеси, м3/с;

S - площадь поперечного сечения газового потока, м2.

 

Векторы нормальной и видимой скоростей пламени в горелке Бунзена составляют угол j, поэтому для скалярных величин из прямоугольного треугольника АВС следует:

 

uн = uв×cos j. (2)

 

Эта закономерность называется законом косинуса. Ее установил один из основателей теории горения, российский физик-метеоролог В.А. Михельсон.

Очень важной особенностью фронта пламени является то, что нормальная скорость его распространения представляет собой также объемную скорость горения газовой смеси:

 

uн = [ м3/(м2×с) ] = [ м/с ], (3)

 

т.е. показывает, сколько объемов смеси сгорает в единицу времени на единице площади фронта пламени. Это позволяет для любого газа определить массовую скорость горения um:

 

um = uн × r0, (4)

 

где r0 - плотность исходной горючей смеси, кг/м3.

Последнее выражение широко используется в теории распространения пламени в паро- и газо-воздушных смесях при исследовании материального и теплового, балансов процессов горения.

Сущность механизма теплового распространения пламени, как было установлено выше, заключается в передаче теплоты из зоны горения теплопроводностью и разогрев прилегающего слоя свежей горючей смеси до температуры самовоспламенения.

Кроме тепловой существует также диффузионная теория распространения пламени. Согласно этой теории пламя распространяется вследствие диффузии активных центров из зоны горения в свежую смесь. Там они инициируют реакции окисления, которые приводят к разогреву смеси с последующим ее воспламенением. Диффузионная теория применяется, в основном, для процессов горения, протекающих по цепному механизму, т.е. для холодных пламен.

Безусловно, определенное участие активные центры принимают и при тепловом механизме распространения пламени. Наибольший интерес представляет та теория, которая позволяет достаточно просто и быстро вывести уравнение для вычисления нормальной скорости распространения пламени. С этой точки зрения более приемлема тепловая теория.


 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: