Green Brown Cyan LightGray 3 глава




Объекты в векторной графике по сравнению с растровой графики при изменении своих размеров не теряют качества, тогда как увеличение изображения в растровой графике приводит к повышению зернистости.

Фрактальная графика

Основана также на математических уравнениях, базовым фрагментом этой графики является само математическое уравнение, а не хранение электронного объекта в памяти и желаемое изображение строится по уравнениям формата графической информации. Фрактальная графика берет начало с так называемых геометрических фракталов, которые являются наиболее наглядными, так как они обладают свойством самоподобия. Двухмерные фракталы можно сформировать, путем определения некоторой ломаной фигуры, которую называют генератором. В течение одного шага алгоритма каждый из отрезков, образующих ломаную фигуру, заменяется ломаной-генератором в определенном масштабе. В итоге многократного повторения данной процедуры формируется фрактальная кривая. При кажущейся сложности сформированной кривой, общий вид ее определяется только формой генератора. Одним из примеров подобных фигур приведен на рис. 1.6.:

Рис. 1.6. Объект фрактальной графики

 

Для кодирования графических изображений используется более 30 форматов файлов, но наиболее популярными являются следующие:

· TIF (Tagged Image File) – файл с данным расширением используется для хранения растровых изображений высокого качества;

· PSD (Photo Shop Document) – формат программы Adobe Photoshop, один из наиболее эффективных по возможности хранения графической информации распространенного вида;

· BMP (Bit Map) – формат хранения растровой информации в ОС Windows и поддерживается всеми программами этой среды;

· GIF (Graphics Interchange Format) – получил распространение в Internet из-за высокой степени сжатия;

· WMF (Windows Meta File) – формат хранения векторных изображений в ОС Windows;

· PDF (Portable Document Format) – разработан фирмой Adobe, для хранения документа целиком с эффективным кодированием изображений;

· JPG (Joint Photographic Experts Group) - объединённая группа экспертов в области фотографии. Данный формат является распространенным способом сжатия фотоизображений.

 

1.5.6. Кодирование звука

Персональный компьютер, который содержит звуковую плату, динамики, микрофон может выполнять запись и воспроизведение аудио информации. Непрерывный аудио сигнал, преобразованный в последовательность электрических сигналов, может быть представлен двоичным кодом посредством соответствующих программ. Файл, который хранит аудио информацию в двоичном коде, называют аудио файлом.

Звуковой сигнал можно представить в виде множества звуковых волн, которые человеческое ухо способно различать примерно в диапазоне от 20 Гц до 20 КГц. При преобразовании звука в электрический сигнал, например с помощью микрофона, можно наблюдать непрерывно изменяющееся во времени напряжение и для компьютерной обработки такой аналоговый сигнал нужно преобразовать в цифровой код. Для этого следует измерять напряжение через равные промежутки времени и записывать полученные значения в память компьютера. Этот процесс называется аналого-цифровым преобразованием или оцифровкой, а устройство, которое выполняет такое преобразование называется аналого-цифровым преобразователем (АЦП). Для воспроизведения закодированного подобным образом звука, необходимо выполнить обратное преобразование с помощью цифро-аналогового преобразователя (ЦАП), а затем необходимо сгладить сформированный ступенчатый сигнал. Таким образом, процесс преобразования звуковых волн в двоичный код в памяти компьютера имеет следующий вид:

звуковая волна > микрофон > аналоговый электрический сигнал >

аудиоадаптер > двоичный код > память компьютера.

Воспроизведение звуковой информации, которая хранится в памяти компьютера, имеет следующую последовательность:

память компьютера > двоичный код > аудиоадаптер > аналоговый электрический сигнал > динамик > звуковая волна.

Аудиоадаптер (звуковая плата) – это специальное устройство, подключаемое к компьютеру и выполняющее преобразование электрических сигналов звуковой частоты в цифровой двоичный код при вводе аудиоинформации и для обратного преобразования из цифрового кода в электрические сигналы при воспроизведении звука.

Рассмотренный метод кодирования аудио информации является достаточно универсальным. При преобразовании звука в цифровую форму производится дискретизация по времени и по уровню, при которой в определенные моменты времени амплитуда звуковой волны измеряется и квантуется, то есть ей присваивается определенное значение из некоторого фиксированного набора. Данный метод называется импульсно-кодовой модуляцией PCM (Pulse Code Modulation). Например, 16-битные звуковые карты обеспечивают возможность кодирования 65536 различных уровней громкости или 16-битную глубину кодирования звука. Качество кодирования звука зависит и от частоты дискретизации - количества измерений уровня сигнала в единицу времени.

Сэмплы и сэмплирование. Под сэмплированием понимается запись в таблицу образцов звучания (сэмплов) реального музыкального инструмента. Сэмплирование является основой волнового синтеза WT(Wave Table – таблично-волновое) аудио информации. Как известно, если при использовании метода частотном синтезе (FM-синтезе) различные виды звуков формируют путем обработки простейших звуковых колебаний, то в основе WT-синтеза лежит использование предварительно записанных в табличную память компьютера различных звуков музыкальных инструментов или, а также разнообразные любые другие звуки, которые встречаются в природе. Над сэмплами можно выполнять различные виды обработки.

Стандартный формат для хранения аудиоданных с последующей возможностью их редактирования - это WAV. Существует еще множество других аудиоформатов, но они менее функциональны.

 

1.5.7. Кодирование команд

 

Наряду с данными в оперативной памяти компьютера хранятся программы решаемых задач, команды которых кодируются последовательностью из нулей и единиц. Команды компьютера принято называть машинными командами, которые содержат следующую информацию:

· код выполняемой операции;

· адреса исходных чисел (операндов);

· адрес результата операции.

Для каждого процессора машинная команда имеет стандартный формат, фиксированную разрядность и состоит из кода операции и адресной части. Ниже представлен пример формата гипотетической трехадресной команды компьютера:

 

КОП (код операции) А1 (адрес первого аргумента) А2 (адрес второго аргумента) А3 (адрес результата)
       

 

Разрядность поля кода операции зависит от количества операций, составляющих систему команд компьютера. Код операции разрядности «m» бит позволяет кодировать до 2m различных команд.

 

1.5.8. Коды, исправляющие ошибки

 

Информация компьютера должна быть надежно защищена от различного рода сбоев, помех, несанкционированного доступа и т.п. Центральные процессоры и устройства оперативной памяти не имеют механических частей и довольно надежны в эксплуатации, в то время как в устройствах ввода-вывода, магнитных дисках обычно используются подвижные механические элементы, поэтому эти устройства наименее надежны. Причиной возникновения ошибок в них может явиться, например, пыль на считывающих головках накопителя на магнитных лентах или дисках. Данные, передаваемые по телефонной линии, могут быть также приняты с ошибками из-за наличия в ней помех. Ошибки могут появляться из-за колебаний напряжения в силовой электрической сети. Короче говоря, при передаче информации в компьютере могут появиться ошибки.

Исправление ошибок заключается в восстановлении некорректно принятой в компьютер по каналу связи информации. Для обнаружения ошибок используют коды обнаружения ошибок, для исправления - корректирующие коды (коды, исправляющие ошибки, коды с коррекцией ошибок, помехоустойчивые коды).

Помехоустойчивое кодирование связано с введением в ко­до­вые комбинации двоичных кодов избыточной информации, не­об­хо­димой для обнаружения и исправления ошибок. Рассмотрим кратко коды, позволяющие обнаруживать ошибки, а в некоторых случаях и исправлять их. Очень простым, но широко используемым методом обнаружения одиночных ошибок, то есть изменения значения одного бита с 0 на 1 или с 1 на 0, является добавление к каждому коду бита контроля кода на четность или нечетность. При четном коде число единиц в битах символа, включая бит четности, должно быть четным, а при нечетном коде бит четности выбирается так, чтобы число единиц в битах символа было нечетным. Если во время передачи символа ошибочно изменится значение одного бита, то число единиц в полученном символе будет иметь неправильную четность и получатель, таким образом, узнает, что произошла ошибка. Один из методов, обеспечивающих не только обнаружение ошиб­ки, но и ее исправление, предложил в 1950 году американский ученый Р. Хэмминг, а данный код получил название кода Хэмминга. В коде Хэмминга к N-битовому коду символа добавляют К бит четности, получая таким образом новый символ длиной (К+N) бит.

 

1.6. Тесты

 

В этом параграфе представлены тесты проверки знаний, полученных читателем при работе с главой 1.

 

1. Информация – это:

a. совокупность сведений, отражающих социально-экономические процессы;

b. сведения о новых технологиях;

c. сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии;

d. совокупность сведений, отражающих математические зависимости.

 

2. Для хранения в памяти слова «информатика» в системе ASCII необходимо следующее количество бит:

a. 1

b. 88

c. 176

d. 11

 

3. Максимальное количество бит кода, которое может храниться в ячейке оперативной памяти, называется:

a. длиной памяти;

b. разрядностью памяти;

c. плотностью памяти;

d. емкостью памяти.

 

4. В слове "небо"при кодировании кодамиASCII содержится... бит информации:

a. 1024;

b. 4;

c. 8;

d. 32.

 

5. 1 Килобайт - это:

a. 8 бит;

b. 1000 символов;

c. 1000 байт;

d. 1024 байт.

6. Минимальной единицей измерения информации является:

a. бит;

b. слово;

c. символ;

d. байт.

 

7. ASCII- это:

a. жесткий диск;

b. марка процессора;

c. таблица кодировки символов;

d. язык программирования.

 

8. С помощью кодовой таблицы ASCII может быть максимально закодировано:

a. 512 символов;

b. 32 символа;

c. 256 символов;

d. 128 символов.

 

9. Перевод текста с английского языка на русский можно назвать:

a. процесс хранения информации;

b. процесс передачи информации;

c. процесс преобразования информации;

d. процесс защиты информации.

10. Элементарным объектом, используемым в растровом графическом редакторе, является:

a. точка экрана (пиксель);

b. прямоугольник;

c. палитра цветов;

d. символ.

11. Процесс, в ходе которого источник информации передает, а получатель информацию принимает информацию, называется:

a. обработкой информации;

b. хранением информации;

c. сбором информации;

d. обменом информации.

 

12. Выделите два основных метода защиты информации от нелегального распространения:

a. копирование данных на автономных носителях;

b. установка паролей на доступ к информации;

c. установка специальных атрибутов файлов;

d. использование архивирования.

 

13. Носителем информации не является:

a. жесткий диск персонального компьютера;

b. книга;

c. географическая карта;

d. звуковая плата персонального компьютера.

 

14. Число 2410 соответствует числу:

a. 110002;

b. 208;

c. 101002;

d. 1416.

 

15. Корневой каталог диска обозначается символами:

a. /;

b. |;

c. \;

d.:.

 

16. Информация на доступном для пользователя языке, называется:

a. полной;

b. полезной;

c. актуальной;

d. достоверной;

e. понятной.

 

17. Информацию, не зависящую от личного мнения или суждения, называют:

a. достоверной;

b. актуальной;

c. объективной;

d. полезной;

e. понятной.

 

18. Цвет точки на экране цветного монитора формируется из сигналов:

a. красного, зеленого, синего и яркости;

b. красного, зеленого, синего;

c. желтого, синего и красного;

d. синего, красного и белого.

 

19. Информацию, существенную и важную в настоящий момент, называют:

a. полезной;

b. актуальной;

c. достоверной;

d. объективной;

e. полной.

 

20. Носителем информации в системе «телевизор - человек» является:

a. гравитационное поле;

b. акустические и электромагнитные волны;

c. радиоволны;

d. вакуум;

e. вещество.

 

21. Укажите наиболее полный пример передачи информации:

a. отправление телеграммы;

b. выполнение процесса запроса к базе данных;

c. поиск необходимого слова в словаре;

d. процедура поиска ошибок в тексте.

22. Под алфавитом понимают:

a. любую конечную последовательность символов;

b. упорядоченный определенным образом конечный набор знаков, расположенных в строго определенной последовательности;

c. совокупность знаков и символов;

d. конечный набор любых знаков;

e. произвольная последовательность конечного набора знаков или символов.

 

23. В алфавите некоторого языка всего два символа («0» и «1») и каждое слово этого языка состоит из трех символов. Какое максимальное число слов можно закодировать в этом языке:

a. 32;

b. 16;

c. 8;

d. 10;

 

Ответы к тестам главы 1

 

                                   
с b d d d a c с с a d b d a с e c b

 

         
b b a b c

 

Глава 2. Основы организация и функционирования компьютеров

 

2.1. Классификация компьютеров

 

По мере совершенствования структур и технологий производства средств вычислительной техники появляются новые классы компьютеров, и различия для определенных моделей компьютеров постепенно изменяются. Используются разнообразные классификационные характеристики компьютерной техники:

· по поколениям;

· по архитектуре, структуре, по количеству процессоров компьютера;

· по быстродействию;

· по условиям эксплуатации;

· по назначению компьютеров и другим характеристикам.

Идея классифицировать компьютеры по поколениям определяется тем, что компьютерная техника за свою длительную историю развития проделала большой путь как с точки зрения используемой элементной базы (лампы, транзисторы, микросхемы, большие и сверхбольшие интегральные схемы), так и в смысле развития структурной организации, значительного расширения сфер применения.

Краткая история развития компьютеров

 

В 1945 г. Американский ученый Джон фон Нейман сформулировал основы организации и функционирования современных компьютеров на основе принципа программного управления работой компьютера, в соответствии с которым программа и данные хранились в оперативной памяти компьютера.

В 1946 г. В США была разработана первая электронная цифровая ЭВМ "Эниак". Машина выполняла за одну секунду только 300 умножений и 5000 сложений.

В 1948 г. в американской фирме Bell Laboratories физики У. Шокли, У. Браттейн и Дж. Бардин создали транзистор, за что они были удостоены Нобелевской премии. Транзисторы оказали революционное влияние на развитие средств вычислительной техники, заменив электронные лампы и открыв путь к созданию микросхем.

В 1951 г. в СССР под руководством С.А. Лебедева была разработана первая в континентальной Европе ЭВМ, названная «МЭСМ» (Малая Электронная Счетная Машина). СССР вошел в лидирующие страны в области проектирования и разработки средств вычислительной техники, что позволило развивать такие важные области как ядерная энергетика и космос.

В 1952 г. в нашей стране был разработан компьютер БЭСМ-1 (Большая Электронная Счетная Машина), который являлся самым быстродействующим компьютером Европе и одним из лучших в мире.

В 1964 г. американская фирма IBM разработала новое семейство ЭВМ третьего поколения с использованием микросхем - IBM/360.

В 1967 г. В СССР была создана ЭВМ БЭСМ-6 с производительностью 1 млн.операций/сек. Это был один из самых быстродействующих компьютеров в мире в то время, за которым последовала разработка компьютера нового типа «Эльбрус»- ЭВМ производительностью 10 млн. операций/с.

В 1979 г. Американская фирма Intel разработала микропроцессор Intel 8088, который фирма IBM стала использовать для разработки и производства персональных компьютеров. В 1981 г. фирма IBM выпустила первый персональный компьютер IBM PC на базе данного микропроцессора.

В 1982 г. и последующие годы фирма Intel выпустила микропроцессоры Intel286 и Intel386, а затем и микропроцессор Intel 486, который

стал первым микропроцессором со встроенным математическим сопроцессором. Данный сопроцессор значительно повысил скорость обработку данных, он выполнял тригонометрические, экспоненциальные и другие математические функции вместо центрального процессора.

В 1993 г. Фирма Intel выпустила первый микропроцессор семейства Pentium, который позволил обрабатывать компьютерам атрибуты "реального мира": аудио, видио информацию, фотоизображения и т.п. И в течении последующих лет и до настоящего времени данное семейство является основой для разработки последующих компьютеров.

Остановимся кратко на рассмотрении классификации компьютеров по поколениям, которая достаточно часто встречается в литературе.

К первому поколению обычно относят машины, созданные в 50-х годах, в них использовались электронные лампы. Опыт использования компьютеров первого поколения показал, что необходимо разрабатывать средства автоматизации программирования, создавать программные системы, упрощающие работу на компьютерах, повышать эффективность использования компьютерной техники. Все это потребовало существенных изменений структуры компьютеров.

Второе поколение ЭВМ - это машины, которые разрабатывались в 1955-65 годах. Для них характерным явилось использование транзисторов, оперативная память использовала магнитные элементы. Начали использоваться для программирования языки высокого уровня. Специальные программы, называемые трансляторами выполняют перевод программы с языка высокого уровня на машинный язык компьютера. Появляются мониторные системы, которые управляют процессом трансляции и выполнения программ. Мониторные системы явились основой для создания современных операционных систем. Некоторые компьютеры второго поколения использовали уже операционные системы с ограниченными возможностями.

Компьютеры третьего поколения появились в мировой практике в начале 60-x годов. Компьютеры третьего поколения уже представляли собой семейство ЭВМ с единой архитектурой, они имели программную совместимость. ЭВМ данного поколения имели эффективные операционные системы, они поддерживали мультипрограммный режим, позволяющий одновременно выполнять несколько программ. Примерами ЭВМ этого поколения являются IBM/360, IBM/370, а также разработанные в СССР ЕСЭВМ, СМЭВМ и многие другие. Быстродействие ЭВМ в рамках одного семейства значительно отличается.

Компьютеры четвёртого поколения - это ЭВМ, разработанные в конце 70-х годов. В принципиальном отношении эти компьютеры отличаются от машин третьего поколения использованием современных языков высокого уровня, упрощенным процессом разработки программного обеспечения. В данных компьютерах получило широкое использование микросхем, емкость оперативной памяти возросла до десятков мегабайт. ЭВМ четвертого поколения являлись многопроцессорными и многомашинными комплексами, использующие общую оперативную память, а также общий пул периферийных устройств. Данные ЭВМ поддерживали режим телекоммуникационной обработки информации, объединялись в компьютерные сети, использовали систем управления базами данных и другие инновации того времени.

В разработках ЭВМ последующих поколений широко используются большие и сверхбольшие интегральные схемы, получили распространение оптоэлектронные принципы. Компьютеры обеспечивают ввод информации с рукописного или печатного текста, аудио ввод, идентифицировать пользователя по голосу, выполнять перевод, происходит переход к обработке знаний и т.д.

По условиям эксплуатации компьютеры подразделяются на два основных типа:

· офисные (универсальные);

· промышленные (специализированные).

Офисные компьютеры используются для работы в нормальных условиях эксплуатации.

Промышленные компьютеры должны удовлетворять специальным требованиям эксплуатации, класс решаемых задач являются проблемно- ориентированными или специализированным.

2.2. Принципы построения персонального компьютера

Персональные компьютеры получили бурное развитие, начиная с 1980 годов. Любой компьютер представляет собой совокупность аппаратного и программного обеспечения. К аппаратному обеспечению компьютеров относятся устройства и схемы, образующие аппаратную конфигурацию, необходимую для выполнения задач, их можно собирать из готовых узлов и блоков, наращивать, они имеют открытую архитектуру. Многочисленные интерфейсы в архитектуре любой вычислительной системы, можно условно разделить на две большие группы: последовательные и параллельные. Через последовательный интерфейс данные передаются последовательно, бит за битом, а через параллельный - одновременно группами битов. Количество битов, участвующих в одной передаче, определяется разрядностью интерфейса, например, восьмиразрядные параллельные интерфейсы передают один байт (8 бит) за один такт. Параллельные интерфейсы обычно имеют более сложную организацию по сравнению с последовательными, но обеспечивают принципиально более высокую скорость передачи информации. Производительность параллельных интерфейсов измеряют байтами в секунду (байт/с; Кбайт/с; Мбайт/с).

Программы - это упорядоченные последовательности команд, обеспечивающие управление аппаратными средствами компьютера. Даже если, на первый взгляд, программа не взаимодействует с оборудованием, не требует ввода или вывода данных в периферийные устройства, все равно ее работа основана на управлении аппаратными устройствами компьютера на основе принципа программного управления.

Программное и аппаратное обеспечение в компьютере работают в непрерывном взаимодействии. Несмотря на то, что мы рассматриваем эти две категории отдельно, нельзя забывать, что между ними существует диалектическая связь, и раздельное их рассмотрение является, по меньшей мере, условным.

В основе структурной организации современных персональных компьютеров используется магистрально-модульный принцип, в соответствии с которым все модули компьютера объединяются в единую систему хранения, обработки и передачи информации (рис.2.1). Данный принцип позволяет пользователю определять необходимую конфигурацию компьютера, осуществлять при необходимости модернизацию (апгрейд) компьютера. Магистраль состоит из трех многоразрядных шин: шина данных, шина адреса и шина управления.

Шина данных. Данная шина используется для передачи данных между процессором и устройствами ПК, а также передаются команды в регистр команд процессора из оперативной памяти. Разрядность шины данных современных ПК составляет 64 бита.

Шина адреса. По шине адреса процессор передает адрес из процессора в адресуемый модуль памяти или периферийное устройство. Разрядность шины адреса определяет адресное пространство памяти, адресуемое процессором

Количество ячеек памяти, адресуемых при прямой адресации можно оценить по формуле: N = 2R, где R - разрядность шины адреса.

Шина управления. По шине управления передаются сигналы управления, определяющие выполняемую операцию в адресуемом устройстве. Например, при чтении данных из памяти формируется сигнал чтения, а при записи – сигнал записи.

 

 

Рис.2.1. Структура персонального компьютера

 

2.3. Базовая конфигурация ПК

Персональный компьютер является универсальной системой обработки и хранения информации, конфигурацию которого можно гибко изменять в соответствии с классом решаемых задач. Такие компьютеры называют компьютерами с открытой архитектурой. В базовую конфигурацию ПК входят следующие модули:

· системный блок;

· монитор;

· клавиатура;

· мышь.

На рис.2.2 показаны основные модули базовой конфигурации и основные устройства системного блока.

2.3.1 Системный блок

 

Системный блок представляет собой основу компьютера, внутри которого установлены основные устройства. Устройства, подключаемые к системному блоку, называют внешними или периферийными, предназначенными для ввода, вывода и долговременного хранения информации.

 

 

Рис.2.2. Состав ПК и устройств системного блока

 

Основными устройствами системного блока (рис. 2.2) являются следующие:

· системная (материнская) плата-2;

· центральное процессорное устройство - 3;

· оперативная память - 4;

· платы расширений – 5;

· блок питания – 6;

· привод оптических дисков – 7;

· накопители на жестких дисках – 8;

2.3.2. Системная плата

Системная плата (systemboad), материнская плата(motherboard) или главная плата (mainboard) - это различные названия печатной платы с набором микросхем, на которой осуществляется монтаж большинства компонентов персонального компьютера посредством печатных проводников и различных разъёмов (слотов). На материнской плате также располагаются слоты для центрального процессорного устройства, графической и звуковой плат, жёстких дисков, оперативной памяти и других дополнительных компонент.

Материнская плата представляет собой многослойную печатную плату из диэлектрика, на которой электропроводящие проводники выполнены из фольги.

Также на плате находятся слоты и порты шин, например PCI Express (PCI-E), PCI, AGP(Accelerated Graphics Port), USB, контроллеров дисков SATA и IDE/ATA. Слотами называют разъемы для подключения внутренних плат, отдельные слоты предназначены для плат оперативной памяти. Разъемы крепления внешних компонентов называют портами, сейчас многие устройства подключаются через USB-порт. Пример системной платы приведен на рис 2.3.

 

 

Рис. 2.3. Системная плата

 

На системной плате размещаются следующие компоненты:

· процессор – основная микросхема, выполняющая обработку данных

· шины интерфейсы – системная магистраль, включающая шину данных, адреса и управляющих сигналов, по которым происходит передача данных и команд;

· оперативная память представляет набор микросхем, она используется оперативного хранения данных во время работы компьютера;

· постоянное запоминающее устройство – микросхема, предназначенная для долговременного хранения данных, в том числе и после выключения компьютера, в которой хранится BIOS;

· комплект чипсет – набор микросхем, который определяет характеристики материнской платы;

· набор разъемов (слотов) и портов - используется для подключения дополнительных внешних и внутренних устройств.

От производительности перечисленных компонентов в значительной степени зависит производительность компьютера и поэтому выбор системной платы является очень важной задачей при конфигурировании ПК.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: