продукции
1.1. Общие сведения о системе сбора
Система сбора и подготовки нефти, газа и воды на нефтяном месторождении должна обеспечивать:
1) автоматическое измерение нефти, газа и воды по каждой скважине;
2) герметизированный сбор нефти, газа и воды на всем пути движения от скважин до магистрального нефтепровода;
3) доведения нефти, газа и пластовой воды на технологических установках до норм товарной продукции (табл. 1.1), автоматический учет этой продукции и передача её транспортным организациям;
4) возможность ввода в эксплуатацию части месторождения с полной утилизацией нефтяного газа до окончания строительства всего комплекса сооружений;
5) надежность эксплуатации технологических установок и возможность полной их автоматизации;
6) изготовление основных узлов системы сбора нефти и газа и оборудования технологических установок индустриальным способом в блочном и модульном исполнении с полной автоматизацией технологического процесса.
Таблица 1.1
Нормативные данные по качеству нефти
в соответствии с требованиями ГОСТ Р 51858-2002
Показатель | Группа нефти | ||
Максимальное содержание воды, %, не более | 0,5 | 0,5 | 1,0 |
Максимальное содержание хлористых солей, мг/л не более | |||
Максимальное содержание механических примесей, %, не более | 0,05 | 0,05 | 0,05 |
Максимальное давление насыщенных паров (ДНП) при температуре 37,8оС, кПа, не более | 66,7 | 66,7 | 66,7 |
Массовая доля органических хлоридов, млн-1 (ppm) | |||
Массовая доля сероводорода, млн-1 (ppm), не более | |||
Массовая доля метил- и этилмеркаптанов в сумме, млн-1 (ppm), не более |
При этом сбрасываемые пластовые воды должны иметь качества, определенные стандартами значения, представленными в табл. 1.2.
|
Таблица 1.2
Требования к качеству воды для закачки в пласт ОСТ 39-225-88
Проницаемость пласта, 10-6 м2 | Удельная трещиноватость пласта | Допустимое содержание в воде, мг/л | |
механических примесей | нефти | ||
£ 0,1 | - | < 3 | < 5 |
> 0,1 | - | < 5 | < 10 |
£ 0,35 | От 6,5 до 2 вкл. | < 15 | < 40 |
> 0,35 | Менее 2 | < 30 | < 50 |
£ 0,6 | От 35 до 3,6 вкл. | < 40 | < 40 |
> 0,6 | Менее 3,6 | < 50 | < 50 |
Чаще всего рекомендуется вместо одного трубопровода большого диаметра укладывать два трубопровода меньшего диаметра, равных по площади большому. Данная схема сбора [2] представлена на рис. 1.1.
Рис. 1.1. Схема герметизированной двухтрубной высоконапорной системы сбора нефти, газа и воды:
1 – эксплуатационные скважины; 2 – выкидные линии; 3 – АГЗУ «Спутник»;
4 – сборный коллектор; 5 – установка предварительного сброса воды (УПСВ);
6 – установка подготовки нефти (УПН); 7 – автоматизированная замерная установка товарной нефти; 8 – кустовая насосная станция (КНС); 9 – нагнетательные скважины; 10 – коллектор товарной нефти; 11 – парк товарных резервуаров; 12 – головная насосная станция; 13 – магистральный нефтепровод; 14 – сборный газопровод; 15 – установка компримирования природного газа (УКПГ); 16 – дожимная насосная станция (ДНС)
Это важно для получения высоких скоростей потоков (1,5-2,5м/с), предотвращающих образование в повышенных местах рельефа местности так называемых «газовых мешков», которые приводят к значительным пульсациям давления в системе сбора и к срыву нормального режима работы сепарационных установок, установок подготовки нефти и установок подготовки и сброса воды.
|
1.2. Описание принципиальной технологической схемы
дожимной насосной станции (ДНС)
Дожимные насосные станции (ДНС) применяются в тех случаях, если на месторождениях (группе месторождений) пластовой энергии недостаточно для транспортировки нефтегазовой смеси до установок предварительного сброса воды (УПСВ) или цеха подготовки и перекачки нефти (ЦППН). Обычно ДНС применяются на отдаленных месторождениях.
Дожимные насосные станции предназначены для сепарации нефти от газа, очистки газа от капельной жидкости, дальнейшего отдельного транспортирования нефти центробежными насосами, а газа - под давлением сепарации. В зависимости от пропускной способности по жидкости существует несколько типов ДНС.
Дожимная насосная станция состоит из следующих блоков:
· буферной емкости;
· сбора и откачки утечек нефти;
· насосного блока;
· свечи аварийного сброса газа.
Все блоки ДНС унифицированы. В качестве буферной емкости применяются горизонтальные нефтегазовые сепараторы (НГС) объемом 50 м3 и более. ДНС имеет резервную буферную емкость и насосный агрегат. Технологической схемой ДНС буферные емкости предназначены:
· для приема нефти в целях обеспечения равномерного поступления нефти к приему перекачивающих насосов;
· сепарации нефти от газа;
· поддержания постоянного подпора порядка 0,3-0,6 МПа на приеме насосов.
Для создания спокойного зеркала жидкости внутренняя плоскость буферной емкости оборудуется решетчатыми поперечными перегородками. Газ из буферных емкостей отводится в газосборный коллектор.
|
Насосный блок включает в себя несколько насосов, систему вентиляции, систему сбора утечек жидкости, систему контроля технологических параметров и систему отопления. Каждый насос имеет электродвигатель. Система контроля технологических параметров оборудуется вторичными датчиками, с выводом показаний приборов на пульт управления в операторной ДНС. В насосном блоке предусмотрено несколько систем защит при отклонении параметров работы насосов от режимных.
1. Автоматическое отключение насосов при аварийном снижении или увеличении давления в нагнетательной линии. Контроль осуществляется с помощью электроконтактных манометров.
2. Автоматическое отключение насосов при аварийном увеличении температуры подшипников насосов или электродвигателей. Контроль осуществляется с помощью датчиков температуры.
3. Автоматическое перекрытие задвижек на выкиде насосов в случае их отключения.
4. Автоматическое включение вытяжной вентиляции при превышении предельно допустимой концентрации газа в насосном помещении, при этом насосы должны автоматически отключаться.
Блок сбора и откачки утечек состоит из дренажной емкости объемом 4 – 12 м3, оборудованной насосом НВ 50/50 с электродвигателем. Этот блок служит для сбора утечек от сальников насосов и от предохранительных клапанов буферных емкостей. Откачка жидкости из дренажной емкости осуществляется на прием основных технологических насосов. Уровень в емкости контролируется с помощью поплавковых датчиков, в зависимости от заданного верхнего и нижнего уровней.
Принцип работы ДНС.
Нефть от групповых замерных установок поступает в буферные емкости, сепарируется, затем подается на прием рабочих насосов и далее в нефтепровод. Отсепарированный газ под давлением через узел регулировки давления поступает в промысловый газосборный коллектор. По газосборному коллектору газ поступает на газокомпрессорную станцию или на установку компримирования природного газа (УКПГ). Расход газа замеряется камерной диафрагмой, устанавливаемой на общей газовой линии. Уровень нефти в буферных емкостях поддерживается при помощи поплавкового уровнемера и электроприводной задвижки, расположенной на напорном нефтепроводе. При превышении максимально допустимого уровня жидкости в НГС датчик уровнемера передает сигнал на устройство управления электроприводной задвижки, она открывается, и уровень в НГС снижается. При снижении уровня ниже минимально допустимого электроприводная задвижка закрывается, обеспечивая тем самым увеличение уровня жидкости в НГС. Для равномерного распределения нефти и давления буферные емкости соединены между собой перепускной линией.
На каждой ДНС должны находиться технологическая схема и регламент работы, утвержденные техническим руководителем предприятия. Согласно этим нормативным документам производится контроль над режимом работы ДНС.
Принципиальная схема установки представлена на рис. 1.2.
Рис. 1.2. Принципиальная схема дожимной насосной станции (ДНС)
Оборудование: С-1; С-2 – нефтегазосепараторы (НГС), ГС – газосепараторы;
Н-1 – центробежный насос. Потоки: ГВД на УКПГ – газ высокого давления на установку комплексной подготовки газа, ГНД – газ низкого давления
1.3. Описание принципиальной технологической схемы
дожимной насосной станции с установкой предварительного сброса воды (ДНС с УПСВ)
Технологический комплекс сооружений ДНС с УПСВ включает в себя:
1) первую ступень сепарации нефти;
2) предварительный сброс воды;
3) нагрев продукции скважин;
4) транспортирование газонасыщенной нефти на ЦПС;
5) бескомпрессорный транспорт нефтяного газа на УКПГ;
6) транспортирование подготовленной пластовой воды в систему ППД;
7) закачку химреагентов (ингибиторов, реагентов - деэмульгаторов) по рекомендациям научно-исследовательских организаций.
Объекты предварительного разделения продукции скважин должны рассматриваться как составная часть единого технологического комплекса сооружений по сбору, транспорту, подготовке нефти, газа и воды.
На ДНС с УПСВ осуществляется сепарация нефти и предварительный сброс воды. Попутный нефтяной газ месторождения используется для нужд котельных и подается на УКПГ.
Как уже указывалось, жидкость, добываемая на месторождении, проходит предварительное обезвоживание на УПСВ с ДНС. После сепараторов она поступает в параллельно работающие отстойники, где происходит расслоение эмульсии. Затем частично обезвоженная нефть поступает на УПН и ЦПС для окончательной подготовки нефти. Подготовленная вода направляется на кустовую насосную станцию, где закачивается в пласт для поддержания пластового давления.
Технологическая схема процесса должна обеспечивать:
а) подготовку нефтяной эмульсии к расслоению перед поступлением в "отстойные" аппараты;
б) сепарацию газа от жидкости с предварительным отбором газа;
в) предварительное обезвоживание нефти до содержания в ней воды не более 5 – 10% (мас).
Для подготовки нефтяной эмульсии к расслоению должна предусматриваться подача реагента - деэмульгатора на концевых участках нефтегазосбора (перед первой ступенью сепарации нефти), а при наличии соответствующих рекомендаций научно-исследовательских организаций - подача воды, возвращаемой с блоков подготовки нефти.
Рис. 1.3. Принципиальная схема дожимной насосной станции с установкой предварительного сброса воды (ДНС с УПСВ)
Оборудование: С-1; С-2 – нефтегазосепараторы (НГС), ГС – газосепараторы; ОГ – отстойник горизонтальный; Н-1,Н-2 – центробежные насосы. Потоки: ГВД на УКПГ – газ высокого давления на установку комплексной подготовки газа; ГНД – газ низкого давления
Процесс предварительного обезвоживания нефти должен предусматриваться при обводненности поступающей продукции скважин не менее 15-20% и осуществляться, как правило, без дополнительного нагрева продукции скважин с применением деэмульгаторов, высокоэффективных при умеренных и низких температурах процесса предварительного обезвоживания нефти.
Предварительное обезвоживание нефти должно преимущественно осуществляться в аппаратах для совместной подготовки нефти и воды. При этом сбрасываемые пластовые воды должны иметь качество, как правило, обеспечивающее их закачку в продуктивные горизонты без дополнительной очистки (предусматривается только дегазация воды).
Сброс пластовых вод с аппаратов предварительного обезвоживания нефти должен предусматриваться под остаточным давлением, обеспечивающим подачу их на прием насосных станций системы заводнения или, при необходимости, на очистные сооружения без установки дополнительных насосов.
Принципиальная схема установки представлена на рис. 1.3.
1.4. Описание принципиальной технологической схемы
установки предварительного сброса воды (УПСВ)
Установка предварительного сброса воды напоминает упрощенную схему установки подготовки нефти. Принципиальное различие состоит в отсутствии оборудования для окончательного обезвоживания нефти до соответствия ГОСТ 51858-2002.
На УПСВ осуществляется сепарация нефти и предварительный сброс воды. Попутный нефтяной газ месторождения используется для нужд котельных и подается на УКПГ.
Жидкость, добываемая на месторождении, проходит предварительное обезвоживание на УПСВ. После сепараторов она поступает в параллельно работающие отстойники, где происходит расслоение эмульсии. Затем частично обезвоженная нефть поступает на конечную сепарационную установку (КСУ), где производится отбор газа при более низком давлении, и затем направляется на УПН или ЦПС для окончательной подготовки нефти. Подготовленная вода направляется на кустовую насосную станцию, где закачивается в пласт для поддержания пластового давления.
Технологическая схема процесса должна обеспечивать:
а) подготовку нефтяной эмульсии к расслоению перед поступлением в "отстойные" аппараты;
б) сепарацию газа от жидкости с предварительным отбором газа и окончательной дегазацией;
в) предварительное обезвоживание нефти до содержания в ней воды не более 5 – 10% (масс.).
Для подготовки нефтяной эмульсии к расслоению должна предусматриваться подача реагента - деэмульгатора на концевых участках нефтегазосбора (перед первой ступенью сепарации нефти), а при наличии соответствующих рекомендаций научно-исследовательских организаций - подача воды, возвращаемой с блоков подготовки нефти.
Процесс предварительного обезвоживания нефти должен предусматриваться при обводненности поступающей продукции скважин не менее 15-20% и осуществляться, как правило, без дополнительного нагрева продукции скважин с применением деэмульгаторов, высокоэффективных при умеренных и низких температурах процесса предварительного обезвоживания нефти.
Предварительное обезвоживание нефти должно преимущественно осуществляться в аппаратах для совместной подготовки нефти и воды.
Сброс пластовых вод с аппаратов предварительного обезвоживания нефти должен предусматриваться под остаточным давлением, обеспечивающим подачу их на прием насосных станций системы заводнения или, при необходимости, на очистные сооружения без установки дополнительных насосных.
Принципиальная схема установки представлена на рис. 1.4.
1.5. Описание принципиальной технологической схемы
установки подготовки нефти (УПН)
Установка подготовки нефти предназначена для обезвоживания и дегазации нефти до параметров, удовлетворяющих требованиям ГОСТ Р 51858-2002.
В нефтегазовом сепараторе С-1 происходит дегазация нефти при давлении 0,6 МПа, которое поддерживается регулятором давления. Для облегчения разрушения водонефтяной эмульсии перед сепаратором С-1 вводится деэмульгатор от блока дозирования химических реагентов.
Из сепаратора С-1 частично дегазированная нефть и пластовая вода поступает на вход блока отстоя, давление в котором поддерживается на уровне 0,3 МПа регулятором давления. Пластовая вода из блока отстоя направляется на сантехнические сооружения для последующей утилизации. Частично обезвоженная и дегазированная нефть из ОГ направляется в электродегидратор (ЭДГ) для окончательного обезвоживания нефти, далее обезвоженная нефть поступает на концевую сепарационную установку - КСУ, давление в которой поддерживается на уровне 0,102 МПа. Подготовленная нефть из КСУ самотеком поступает в резервуарный парк для хранения и последующего автовывоза или подачи нефти в транспортный трубопровод.
Газ дегазации от С-1 и С-2 поступает на газосепаратор ГС и направляется на установку комплексной подготовки газа УКПГ.
Остатки газа из ГС используются на собственные нужды в качестве топливного газа для электростанции.
Рис. 1.4. Принципиальная схема установки предварительного сброса воды (УПСВ):
Оборудование: С-1; С-2 – нефтегазосепараторы (НГС), ГС – газосепараторы; ОГ – отстойник горизонтальный;
Н-1, Н-2 – центробежные насосы. Потоки: УКПГ – газ высокого давления на установку комплексной подготовки газа
Рис. 1.5. Принципиальная схема установки подготовки нефти (УПН):
Оборудование: С-1; С-2 – нефтегазосепараторы (НГС), ГС – газосепараторы; ЭДГ – электродегидратор;
ОГ – отстойник горизонтальный; Н-1,Н-2 – центробежные насосы; РВС – резервуар стационарный.
Потоки: УКПГ – газ высокого давления на установку комплексной подготовки газа; УУВ – узел учета воды;
УУН – узел учета нефти
Отделенная капельная жидкость из ГС направляется в общую линию потока нефти через буферную емкость, которая не указана на схеме.
Технологический комплекс сооружений УПН включает в себя:
1) первую ступень сепарации нефти;
2) предварительный сброс воды;
3) нагрев продукции скважин;
4) обезвоживание в блоке электродегидраторов;
4) транспортирование нефти в резервуарный парк;
5) бескомпрессорный транспорт нефтяного газа на УКПГ;
6) транспортирование подготовленной пластовой воды в систему ППД;
7) закачку химреагентов (ингибиторов, реагентов- деэмульгаторов).
Данный вид установок системы сбора и подготовки является конечной стадией в пути добываемой продукции от скважины до подготовленной и очищенной нефти, предназначенной для дальнейшей переработки [2].
Принципиальная схема установки представлена на рис. 1.5.
2. Описание оборудования, используемого на установках сбора и подготовки скважинной продукции
2.1. Емкостное оборудование
2.1.1. Вертикальные и горизонтальные емкости
Резервуары предназначены для накопления, кратковременного хранения и учета нефти. Группу сосредоточенных в одном месте нефтяных резервуаров называют резервуарным парком [2].
Резервуары классифицируются по следующим характеристикам:
- по назначению;
- расположению;
- материалу, из которого они изготовлены.
По назначению нефтяные резервуары подразделяются:
- на сырьевые;
- технологические;
- товарные.
Сырьевые резервуары предназначены для хранения обводненной нефти. В технологических резервуарах осуществляется предварительный сброс пластовой воды. Товарные резервуары используются для хранения обезвоженной и обессоленной нефти.
Резервуарный парк, содержащий товарные резервуары, называется товарным парком.
По расположению нефтяные резервуары подразделяют:
- на надземные;
- подземные;
- полуподземные.
По материалу, из которого они изготовлены, нефтяные резервуары разделяют на металлические и железобетонные. Обычно наземные резервуары – металлические, а подземные и полуподземные – железобетонные. На нефтяных месторождениях наибольшее распространение получили надземные стальные вертикальные цилиндрические резервуары.
Вертикальные цилиндрические стальные резервуары типа РВС представляют собой сварную конструкцию из стальных листов толщиной от 4 до 14 мм. Наиболее распространенные размеры листов: 1000х2000 мм и 1250х2500 мм при толщине стенки 4 мм и 1500х6000 мм при толщине стенки больше 4 мм.
Основные элементы вертикального стального резервуара - днище, корпус и крыша. Днище резервуара сварное из листов толщиной до 5 мм, расположено на фундаменте в виде песчаной подушки и имеет уклон от центра к периферии, равный 2%. Уклон днища необходим для стока и удаления отделившейся в резервуаре пластовой воды. Вокруг фундамента для отвода ливневых вод устраивают кювет с уклоном в сторону канализации.
Корпус резервуара изготовляют в виде поясов, которые могут соединяться между собой тремя способами: ступенчатым, телескопическим и встык. Толщина поясов или одинакова по высоте, или возрастает к низу.
Крыши вертикальных стальных резервуаров бывают трех типов:
- плоские;
- конические;
- сферические.
Резервуары с плоскими и коническими крышами рассчитаны на избыточное давление в газовом пространстве 2000 Па и вакуум 250 Па, а резервуары со сферической крышей рассчитаны на избыточное давление в газовом пространстве 0,02 МПа и вакуум 0,002 МПа.
Резервуары с плоскими крышами имеют наименьшее газовое пространство, поэтому в них меньшие потери нефти от испарения, что обеспечило широкое их использование на нефтяных месторождениях. Крышу резервуара собирают из крупноразмерных щитов заводского изготовления. Щиты представляют собой каркас из двутавров и швеллеров, к которым приварен листовой настил толщиной 2,5 мм. В середине резервуара щиты опираются на центральную стойку. Технологическая характеристика вертикальных стальных резервуаров приведена в табл. 2.1.
Таблица 2.1
Резервуары вертикальные стальные
Номинал. объем, м3 | Геометр. характеристики, мм | Общая масса справочн., т | ||
диаметр | высота | без понтона | с понтоном | |
Расчетная температура -40°С и выше | ||||
8,2 10,8 13,8 15,4 22,9 26,7 48,0 75,4 103,1 216,6 407,0 534,2 | 10,3 13,4 16,4 19,5 27,2 32,3 53,6 82,9 118,3 233,8 440,0 581,0 | |||
Расчетная температура -40°С до -65°С | ||||
8,4 11,1 14,0 15,7 22,9 27,9 48,1 68,8 101,5 196,8 391,8 |
Выбор типа резервуара, его внутренней оснащенности, противокоррозионного покрытия, способа монтажа обосновывается проектом в зависимости от емкости, назначения, климатических условий, характеристики сред, а также с учетом максимального снижения потерь.
Каждый резервуар должен быть оснащен:
- дыхательными клапанами,
- предохранительными клапанами,
- огнепреградителями,
- уровнемерами,
- пробоотборниками,
- сигнализаторами уровня,
- манометрами,
- устройствами для предотвращения слива (хлопушками),
- противопожарным оборудованием,
- оборудованием для подогрева (при необходимости),
- приемо-раздаточными патрубками,
- зачистным патрубком,
- вентиляционными патрубками,
- люками (люк световой, люк замерный).
Устройство, взаимное расположение и расстояния между отдельными резервуарами и группами должны соответствовать требованиям СНиП 2.11.03-93 «Склады нефти и нефтепродуктов. Противопожарные нормы».
Каждый резервуар должен быть огражден сплошным земляным валом, рассчитанным на гидростатическое давление разлившейся из резервуара жидкости. Территория между резервуаром и обвалованием называется каре.
На рис. 2.1 изображен цилиндрический вертикальный резервуар. Рассмотрим установленное на нем оборудование (рис. 2.2) и его назначение.
Распределители жидкости входящего потока в РВС. Если требуется добиться наилучшей эффективности, необходимо обеспечить распределение нефти по всей площади поперечного сечения резервуара. Плохое распределение жидкости приводит к короткому гидравлическому циклу и увеличенной приведенной скорости нефти, что снижает возможность осаждения водных частиц. Количество отводных трубок зависит от диаметра емкости, подходящая скорость составляет порядка 0,2 – 0,3 м/с.
На рис. 2.3 представлены три типа распределителя.
Верхний световой люк (рис. 2.4) служит для проветривания во время ремонта, зачистки резервуара, а также для подъема хлопушек и шарнирных труб при обрыве рабочего троса.
Замерный люк (рис. 2.5.)служит для замера уровня нефтепродукта и подтоварной воды в резервуаре, а также для отбора проб при помощи пробоотборника.
Дыхательный клапан ( рис. 2.6) применяется в резервуарах для хранения светлых нефтепродуктов и сырой нефти. В процессе эксплуатации резервуаров, содержащих светлые нефтепродукты, сырую нефть и дизельное топливо, происходит “дыхание” резервуара. При повышении температуры окружающей среды давление в газовом пространстве повышается, и часть газа из емкости должна быть выведена. При понижении температуры давление понижается, и для предупреждения образования вакуума в емкость должен быть введен газ или воздух. Такой обмен называют “малым дыханием” резервуара.
При закачке в резервуар продукта вытесняется газ, заполнивший резервуар; при откачке освобождаемый продуктом объем должен быть заполнен каким-либо газом (нефтяные газы, иногда воздух). Вытеснение или подсос газов при закачке - откачке продукта называют “большим дыханием” резервуара.
Огнепреградители, или заградители пламени (рис. 2.7), предохраняют резервуар от проникновения внутрь него огня и искр через дыхательные и предохранительные клапаны. Огнепреградители представляют собой фольговую кассету, состоящую из гофрированных и плоских алюминиевых лент, свитых в спираль и образующих ряд параллельных клапанов. Огневые преградители обычно монтируются под дыхательным клапаном.
Рис. 2.2. Трубопроводная обвязка резервуара
Рис. 2.3. Распределители жидкости:
1 – ромашка; 2 – продольный разрез трубы пополам; 3 – перевёрнутый
полутрубный
|
Принцип действия огневого предохранителя основан на том, что пламя или искра не способны проникнуть внутрь резервуара через отверстие малого сечения в условиях интенсивного теплоотвода.
Рис. 2.5. Люк замерный
Рис. 2.6. Непромерзающий механический дыхательный клапан:
1 - корпус; 2- тарелка; 3- седло; 4- обойма; 5- защитный кожух; 6- огнепреградитель; 7- шток; 8- направляющая труба; 9- покрытие тарелки (пленка из фторопласта 4)
|
Подогреватели (рис. 2.8) служат для подогрева темных нефтепродуктов и масел некоторых сортов, вязкость которых при хранении в резервуарах по разным причинам увеличивается настолько, что перекачка их по трубопроводам без подогрева не представляется возможной.
Для обогрева применяют теплообменные элементы (змеевики, полутрубы, уголки), приваренные к корпусу, или внутренние подогреватели. Внутренние подогреватели изготовляют в виде U- образных теплообменников, которые вставляются в боковые люки, или в виде секционных труб (трубчатых секционных подогревателей), укладываемых на дно резервуара. Конструкции подогревателей различают следующих типов: стационарные и переносные, общие и местные, трубчатые, циркуляционного подогрева, паровые, электрические и др.
С помощью подогревателей продукты перед выводом подогреваются для уменьшения вязкости до заданного значения.
Железобетонные резервуары по виду хранимого нефтепродукта подразделяются на резервуары для мазута, нефти, масел и светлых нефтепродуктов. Нефть и мазут практически не оказывают химического воздействия на бетон и обладают способностью за счет тяжелых фракций и смол тампонировать мелкопористые материалы, уменьшая со временем их просачиваемость и проницаемость. При хранении этих продуктов в железобетонных резервуарах не требуется специальной защиты стенок покрытия резервуаров. При хранении смазочных масел во избежание их загрязнения внутренние поверхности резервуаров защищают различными покрытиями и облицовками. То же относится и к резервуарам для светлых легкоиспаряющихся нефтепродуктов, которые, обладая незначительной вязкостью, легко фильтруются через бетон. Кроме того, покрытие должно обладать повышенной герметичностью (газонепроницаемостью) с целью уменьшения потерь от испарения.
Рис. 2.8. Схема установки трубчатого подогревателя
Железобетонные резервуары, кроме экономии металла, обладают еще рядом технологических преимуществ. При хранении в них подогретой вязкой нефти и нефтепродуктов медленнее происходит их остывание за счет малых потерь, а при хранении легкоиспаряющихся светлых нефтепродуктов уменьшаются потери от испарения, так как резервуары при подземной установке менее подвержены солнечному облучению.
2.1.2. Оборудование для сепарации скважинной продукции
Сепарация, назначение, классификация и конструкция сепараторов.
Процесс сепарации начинается уже сразу на первых этапах движения нефти, когда из нефти отбираются выделившиеся газообразные углеводороды (с падением давления), находящиеся в пластовых условиях в жидком состоянии.
Жидкая фаза может, в свою очередь, состоять из нефти и пластовой воды, содержание которой колеблется от нуля до значительных величин. Следовательно, в случае содержания воды в продукции скважин мы имеем дело с трехфазным или нефтеводогазовым потоком, который состоит из нефти, газа и воды [3].
Первым узлом отбора легких фракций оказываются трапно-сепарационные установки, на которых от нефти отделяется свободный газ, подаваемый далее по газосборным коллекторам на промысловую компрессорную станцию либо на газобензиновый завод.
Нефтегазовые сепараторы служат для отделения газа от жидкой продукции скважин. Процесс сепарации осуществляется:
1) для получения нефтяного газа, используемого как химическое сырье или топливо;
2) разложения образовавшейся пены;
3) отделения воды от нефти при добыче нестойких эмульсий;
4) уменьшения пульсации при транспортировании нефти от сепараторов первой ступени до установки подготовки нефти;
5) уменьшения перемешивания нефтегазового потока и снижения тем самым гидравлических сопротивлений.
От проведения процессов сепарации зависят потери легких фракций нефти при последующем ее транспорте и хранении. Установлено, что при моментальной сепарации нефти (с резким снижением давления) существенно увеличивается уносимое количество тяжелых углеводородов быстро движущейся струей свободного газа.
При ступенчатой сепарации подбором давлений на ступенях можно достигнуть выделения в основном только свободного газа, при минимальном уносе нефтью легких углеводородов, которые затем теряются на последующих этапах ее движения.
Затруднительно дать однозначный ответ на вопрос оптимального выбора числа ступеней сепарации, например, при многоступенчатой сепарации нефти, применяемой, как правило, при высоких давлениях (4-8 МПа). На устьях скважин в результате незначительного понижения давления и температур на каждой ступени происходит постепенное выделение газовой фазы (вначале легких фракций – метана, этана, затем частичное выделение тяжелых углеводородов – пропана, бутана, пентана) и в нефти остается большое количество невыделившихся тяжелых углеводородов.
Если при том же высоком устьевом давлении применить трех- или двухступенчатую сепарацию, то в результате резкого снижения давления в сепараторах будет интенсивно выделяться газовая фаза, и вместе с легкими углеводородами в газовую фазу из нефти перейдет большое количество тяжелых углеводородов, представляющих собой ценное сырье для получения из этих газов жидких углеводородов, в частности, пропана, бутана и газового бензина.
Из сказанного следует, что при сборе и транспортировке нефти на площадях месторождений можно применять как многоступенчатую, так и двухступенчатую сепарацию. С точки зрения экономии металла, удобства обслуживания и наличия поблизости от месторождения газоперерабатывающего завода всегда целесообразно применять трехступенчатую сепарацию. Выделившийся на первой ступени сепарации газ под собственным давлением направляется на местные нужды: для отопления жилых и производственных зданий, в котельные и т.д. Газ, получаемый на второй и третьей ступенях сепарации, где предусматривается резкое снижение давления, будет жирным, т.е. содержащим большое количество тяжелых углеводородов, и может направляться на ГФУ или ГПЗ.
В сепараторах любого типа, используемых на нефтяных месторождениях, различают следующие четыре секции (рис. 2.9):
1. Основная сепарационная секция, служащая для выделения из нефти газа, на работу которой большое влияние оказывает конструктивное оформление ввода продукции скважин (радиальное, тангенциальное, использование различных насадок - диспергаторов, турбулизирующих ввод газожидкостной смеси).
Рис. 2.9. Общий вид и детали вертикального сепаратора:
I -основная сепарационная секция; II - осадительная секция; III - секция сбора нефти;; IV - каплеуловительная секция; 1-корпус; 2- раздаточный коллектор; 3- поплавок; 4- дренажная труба; 5- наклонные плоскости; 6- ввод газожидкостной смеси; 7 - регулятор давления; 8-выход газа; 9- перегородка, выравнивающая скорость газа в жалюзийном каплеуловителе; 10- жалюзийный каплеуловитель; 11- регулятор уровня; 12-сброс нефти; 13- сброс грязи; 14-люк; 15-заглушки; 16- предохранительный клапан
2. Осадительная секция, в которой происходит дополнительное выделение пузырьков газа, увлеченных нефтью из сепарационной секции. Для более интенсивного выделения газа из нефти последнюю направляют тонким слоем по наклонной плоскости, увеличивая тем самым длину пути движения нефти, т.е. эффективность ее сепарации. Наклонные плоскости рекомендуется изготовлять с небольшим порогом, способствующим выделению газа из нефти.
3. Секция сбора нефти, занимающая самое нижнее положение в сепараторе и предназначенная как для сбора, так и для вывода нефти из сепаратора. В зависимости от эффективной работы предыдущих секций сепаратора, нефть может находиться здесь или в однофазном состоянии, или в смеси с газом.
4. Каплеуловительная секция, расположенная в верхней части сепаратора и служащая для улавливания мельчайших капелек жидкости, уносимых потоком газа.
Работа сепараторов любого типа, устанавливаемых на нефтяном месторождении, характеризуется двумя основными показателями: количеством капельной жидкости, уносимой потоком газа из каплеуловительной секции, и количеством пузырьков газа, уносимых потоком нефти из секции сбора нефти. Чем меньше эти показатели, тем лучше работает сепаратор.