Связь ряда Фурье и дискретного преобразования Фурье




Лекция 13. Шум от квантования сигнала.

Multiresolution - переменная разрешающая способность

Пусть справедливо дополнительное предположение: . Из включения вытекает представление , где - ортогональное дополнение пространства до пространства . При сделанных предположениях пространство ,и любая функция , где . Последнее разложение интерпретируется как представление функции с нарастающей степенью детализации, которое и получило название Multiresolution. Если в качестве материнской функции выбрана функция , базис пространства составляют функции, полученные сдвигом из

Дискретный сигнал

Начиная с этого момента дальнейшее изложение ориентируется на компьютерную обработку сигнала. Основное отличие состоит в отсутствии понятия непрерывности, на котором базировался предыдущий материал.

Шум от дискретизации

В результате перехода от непрерывного сигнала к дискретному возникает искажение. Реальный сигнал . Здесь первое слагаемое - дискретный сигнал, а второе - ошибка. Пусть - длина интервала между соседними дискретными значениями. Предположим, что для представления сигнала используются битов, а весь интервал возможных значений входного сигнала это . Тогда имеет место равенство . В процессе дискретизации вместо самого сигнала берется ближайшее возможное дискретное значение. В силу этого, . Согласно простейшей модели, имеет равномерное распределение на интервале изменения, поэтому дисперсия . Качество процедуры дискретизации определяется величиной , где в числителе стоит дисперсия исходного сигнала. Заменяя , получим . На практике используется величина и получается результат в децибелах. В нашем случае это . Хороший уровень качества равен 90дБ, который достигается при B=16.

Дискретное преобразование Фурье

При машинной обработке вместо интеграла Фурье приходится пользоваться его приближением, подсчитанным с помощью конечной суммы. В результате возникают дополнительные эффекты, а теория дискретного преобразования Фурье становится самостоятельной дисциплиной.

Рассмотрим мерное пространство последовательностей длины . Каждый элемент этого пространства имеет вид где - некоторая функция, принимающая комплексные значения. В этом пространстве рассмотрим набор векторов, составленный из последовательностей , построенных по функциям , . В пространстве определено скалярное произведение:

 

. Имеет место равенство . Это означает, что последовательности составляют базис пространства. При этом для произвольной функции , где . Эти две формулы обычно записывают в виде

, (1)

и называют дискретным преобразованием Фурье. Из последней формулы следует, что есть аналог значения преобразования Фурье исходной функции, вычисленного в точке .

Связь ряда Фурье и дискретного преобразования Фурье

Пусть периодическая на функция задана формулой

. Выберем и найдем дискретное преобразование, используя значения функции в точках . Легко видеть, что равно если и 0 в противном случае. Отсюда следует, что коэффициент в формуле (1), найденный по последовательности , равен . Этот эффект называют эффектом подмены частот, поскольку вместе с ожидаемой частотой в этот коэффициент вносят вклад и другие частоты



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: