Действующее и среднее значения несинусоидальных функций




Формулировка закона Ома

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого проводника и обратно пропорциональна его сопротивлению:

I = U / R; [A = В / Ом]


Ом установил, что сопротивление прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения и зависит от вещества проводника.

R = ρl / S,
где ρ - удельное сопротивление, l - длина проводника, S - площадь поперечного сечения проводника.

1. Законы Кирхгофа

1-й закон для узла: Алгебраическая сумма токов в узле равна нулю

2-й закон для контуров: Алгебраическая сумма ЭДС в замкнутом контуре равняется алгебраической сумме падений напряжений на всех участках контура.

 

 

8. Энергетический баланс в электрической цепи постоянного тока.

В любой электрической цепи должен соблюдаться энергетический баланс - баланс мощностей: алгебраическая сумма мощностей всех источников равна арифметической сумме мощностей всех приемников энергии.

В левой части равенства слагаемое берется со знаком "+" если Е и I совпадают по направлению и со знаком "-" если не совпадают.

Если направления ЭДС и тока I в источнике противоположны, то физически это означает, что данный источник работает в режиме потребителя.

Например:

9. Основные понятия переменного тока.

Переменными называют токи и напряжения, изменяющиеся во времени, по величине и направлению. Их величина в любой момент времени называется мгновенным значением. Обозначаются мгновенные значения малыми буквами: i, u, e, p.
Токи, значения которых повторяются через равные промежутки времени, называются периодическими. Наименьший промежуток времени, через который наблюдаются их повторения, называется периодом и обозначается буквой Т. Величина, обратная периоду, называется частотой, т.е.
f=1/T

Максимальное значение переменного тока или напряжения называется амплитудой. Оно обозначается большими буквам с индексом ''m'' (например, Im). Существует также понятие, действующего значения переменного тока (I). Количественно оно равно

10. Векторноепредставлениесинусоидальныхтоков и напряжений.

На декартовой плоскости из начала координат проводят векторы, равные по модулю амплитудным значениям синусоидальных величин, и вращают эти векторы против часовой стрелки (в ТОЭ данное направление принято за положительное) с угловой частотой, равной w. Фазовый угол при вращении отсчитывается от положительной полуоси абсцисс. Проекции вращающихся векторов на ось ординат равны мгновенным значениям ЭДС е1 и е2 (рис. 3). Совокупность векторов, изображающих синусоидально изменяющиеся ЭДС, напряжения и токи, называют векторными диаграммами. При построении векторных диаграмм векторы удобно располагать для начального момента времени (t=0), что вытекает из равенства угловых частот синусоидальных величин и эквивалентно тому, что система декартовых координат сама вращается против часовой стрелки со скоростью w. Таким образом, в этой системе координат векторы неподвижны (рис. 4). Векторные диаграммы нашли широкое применение при анализе цепей синусоидального тока. Их применение делает расчет цепи более наглядным и простым. Это упрощение заключается в том, что сложение и вычитание мгновенных значений величин можно заменить сложением и вычитанием соответствующих векторов

 

20. ферромагнитные (относительная магнитная проницаемость);

неферромагнитные (относительная магнитная проницаемость).

Для концентрации магнитного поля и придания ему желаемой конфигурации отдельные части электротехнических устройств выполняются из ферромагнитных материалов. Эти части называют магнитопроводами или сердечниками. Магнитный поток создается токами, протекающими по обмоткам электротехнических устройств, реже – постоянными магнитами. Совокупность устройств, содержащих ферромагнитные тела и образующих замкнутую цепь, вдоль которой замыкаются линии магнитной индукции, называют магнитной цепью. Таблица 1. Векторные величины, характеризующие магнитное поле

Наименование Обозначение Единицы измерения Определение
Вектор магнитной индукции Тл (тесла) Векторная величина, характеризующая силовое действие магнитного поля на ток по закону Ампера
Вектор намагниченности А/м Магнитный момент единицы объема вещества
Вектор напряженности магнитного поля А/м , где Гн/м- магнитная постоянная

21. Основные законы магнитных цепей

Таблица 4.. Основные законы магнитной цепи

Наименование закона Аналитическое выражение закона Формулировка закона
Закон (принцип) непрерывности магнитного потока Поток вектора магнитной индукции через замкнутую поверхность равен нулю
Закон полного тока Циркуляция вектора напряженности вдоль произвольного контура равна алгебраической сумме токов, охватываемых этим контуром

Таблица 5. Законы Кирхгофа и Ома для магнитных цепей

Наименование закона Аналитическое выражение закона Формулировка закона
Первый закон Кирхгофа Алгебраическая сумма магнитных потоков в узле магнитопровода равна нулю
Второй закон Кирхгофа Алгебраическая сумма падений магнитного напряжения вдоль замкнутого контура равна алгебраической сумме МДС, действующих в контуре
Закон Ома где Падение магнитного напряжения на участке магнитопровода длиной равно произведению магнитного потока и магнитного сопротивления участка

23.Ферромагнитные материалы: Ферромагнитные материалы служат проводниками магнитного потока. Их свойства характеризуются кривыми намагничивания, связывающими напряженность магнитного поля, действующего на материал, с магнитной индукцией, возникающей в материале. При возрастании напряженности поля индукция также растет, сначала быстрее, затем медленно. Железо, как принято говорить, насыщается. Если, дойдя до некоторой напряженности поля, начать уменьшать индукции не получат прежних значений, а будут несколько больше, так что кривая обратного хода пойдет выше первой, так называемой, основной кривой.

24. Не линейная цепь- это цепь, которая содержит хотя бы 1 не линейный элемент.Активные нелинейные сопротивления характеризуются вольтамперной характеристикой

(рис. 4.1).
Характеристики элементов могут быть симметричными и несимметричными. Они располагаются в первом и в третьем квадрантах. У нелинейных элементов их сопротивление зависит от напряжения r(u) или от тока, r(i).Примером активного нелинейного сопротивления является полупроводниковый диод.Его вольтамперная характеристика (ВАХ) несимметрична (рис. 4.2) и содержит рабочие (сплошная линия) и нерабочие зоны (штриховая линия). На электрических схемах диод изображается, как показано на рис. 4.3. Он относится к неуправляемым элементам.Примером управляемого активного нелинейного сопротивления является транзистор (рис. 4.4). Током базы (Б) изменяют сопротивление между эмиттером (Э) и коллектором (К).5. Расчет простых цепей постоянного тока

Целью расчёта электрической цепи постоянного токаявляется определение некоторых параметров на основе исходных данных, из условия задачи. На практике используют несколько методов расчёта простых цепей. Один из них базируется на применении эквивалентных преобразований, позволяющих упростить цепь.

Под эквивалентными преобразованиями в электрической цепи подразумевается замена одних элементов другими таким образом, чтобы электромагнитные процессы в ней не изменились, а схема упрощалась. Одним из видов таких преобразований является замена нескольких потребителей, включённых последовательно или параллельно, одним эквивалентным.

6. Расчет сложных цепей постоянного тока

В ходе расчёта сложной цепи необходимо определить некоторые электрические параметры (в первую очередь токи и напряжения на элементах) на основе исходных величин, заданных в условии задачи. На практике используются несколько методов расчёта таких цепей.Дляопределения токов ветвей можно использовать: метод, базирующийся на основании непосредственного применения законов Кирхгофа, метод контурных токов, метод узловых напряжений.Для проверки правильности вычисления токов необходимо составить баланс мощностей. Из закона сохранения энергии следует, что алгебраическая сумма мощностей всех источников питания цепи равна арифметической сумме мощностей всех потребителей.Мощность источника питания равна произведению его ЭДС на величину тока, протекающего через данный источник. Если направление ЭДС и тока в источнике совпадают, то мощность получается положительной. В противном случае она отрицательна.Мощность потребителя всегда положительна и равна произведению квадрата тока в потребителе на величину его сопротивления.Математически баланс мощностей можно записать в следующем виде:

где n – количество источников питания в цепи; m – количество потребителей.Если баланс мощностей соблюдается, то расчет токов выполнен правильно.В процессе составления баланса мощностей можно выяснить, в каком режиме работает источник питания. Если его мощность положительна, то он отдает энергию во внешнюю цепь (например, как аккумулятор в режиме разряда). При отрицательном значении мощности источника последний потребляет энергию из цепи (аккумулятор в режиме заряда).

7. Расчет электрической цепи методом контурных токов. Метод контурных токов дает возможность определять токи в цепи с помощью стольких уравнений, сколько элементарных контуров имеет цепь.Контурные токи являются условными алгебраическими величинами, одинаковыми по величине для всех участков данного контура. Направления их выбирают произвольно и показывают в электрических схемах дугообразными стрелками индексами.Расчет сложной электрической цепи методом контурных токов выполняется в следующем порядке:

1. Произвольно выбирают направление контурных токов, обозначают их и для удобства считают такое же направление обхода по контурам.

2. Составляют уравнения по второму закону Кирхгофа с контурными токами. При этом если на участке цепи действует несколько контурных токов, то падение напряжения на этом участке равно алгебраической сумме падений напряжений, созданных каждым контурным током.Для определения величины и направления реальных токов применяют правила:

1. если на участке цепи действует только один контурный ток, то действительный ток равен контурному и имеет такое же направление;

2. если на участке цепи действуют два контурных тока противоположных направлений, то действительный ток равен их разности и направлен в сторону большего тока;

3. если в ветви действуют контурные токи одинакового направления, то действительный ток равен сумме и совпадает по направлению с ними.

31. Выпрямитель (электрического тока) — преобразователь электрической энергии; механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.[1][2]

классификация

Выпрямители классифицируют по следующим признакам:

по виду переключателя выпрямляемого тока

механические синхронные с щёточноколлекторным коммутатором тока[3];

механические синхронные с контактным переключателем (выпрямителем) тока;

с электронной управляемой коммутацией тока (например, тиристорные);

электронные синхронные (например, транзисторные) — как разновидность выпрямителей с управляемой коммутацией;

с электронной пассивной коммутацией тока (например, диодные);

по мощности

силовые выпрямители[4];

выпрямители сигналов[5];

по степени использования полупериодов переменного напряжения

однополупериодные — пропускают в нагрузку только одну полуволну[6];

двухполупериодные — пропускают в нагрузку обе полуволны;

неполноволновые — не полностью используют синусоидальные полуволны;

полноволновые — полностью используют синусоидальные полуволны;

по схеме выпрямления — мостовые, с умножением напряжения, трансформаторные, с гальванической развязкой, бестрансформаторные и пр.;

по количеству используемых фаз — однофазные, двухфазные, трёхфазные и многофазные;

по типу электронного вентиля — полупроводниковые диодные, полупроводниковые тиристорные, ламповые диодные (кенотронные), газотронные, игнитронные, электрохимическиеи пр.;

по управляемости — неуправляемые (диодные), управляемые (тиристорные);

по количеству каналов — одноканальные, многоканальные;

по величине выпрямленного напряжения — низковольтные (до 100В), средневольтовые (от 100 до 1000В), высоковольтные (свыше 1000В);

по назначению — сварочный, для питания микроэлектронной схемы, для питания ламповых анодных цепей, для гальваники и пр.;

по степени полноты мостов — полномостовые, полумостовые, четвертьмостовые;

по наличию устройств стабилизации — стабилизированные, нестабилизированные;

по управлению выходными параметрами — регулируемые, нерегулируемые;

по индикации выходных параметров — без индикации, с индикацией (аналоговой, цифровой);

по способу соединения — параллельные, последовательные, параллельно-последовательные;

по способу объединения — раздельные, объединённые звёздами, объединённые кольцами;

по частоте выпрямляемого тока — низкочастотные, среднечастотные, высокочастотные.

32. Однополупериодный выпрямитель (четвертьмост)Однополупериодный выпрямитель: график напряжения по времени до выпрямления — одна из возможных схем выпрямителя — и график напряжения по времени после выпрямленияПростейшая схема однополупериодного выпрямителя состоит только из одного выпрямляющего ток элемента (диода). На выходе — пульсирующий постоянный ток. На промышленных частотах (50—60 Гц) не имеет широкого применения, так как для питания аппаратуры требуются сглаживающие фильтры с большими величинами емкости и индуктивности, что приводит к увеличению габаритно-весовых характеристик выпрямителя. Однако схема однополупериодного выпрямления нашла очень широкое распространение в импульсных блоках питания с частотой переменного напряжения свыше 10 КГц, широко применяющихся в современной бытовой и промышленной аппаратуре. Объясняется это тем, что при более высоких частотах пульсаций выпрямленного напряжения, для получения требуемых характеристик (заданного или допустимого коэффициента пульсаций), необходимы сглаживающие элементы с меньшими значениями емкости (индуктивности). Вес и размеры источников питания уменьшаются с повышением частоты входного переменного напряжения.Однополупериодный выпрямитель или четвертьмост является простейшим выпрямителем и включает в себя один вентиль (диод или тиристор).

Допущения: нагрузка чисто активная, вентиль — идеальный электрический ключ.Напряжение со вторичной обмотки трансформатора проходит через вентиль на нагрузку только в положительные полупериоды переменного напряжения. В отрицательные полупериоды вентиль закрыт, всё падение напряжения происходит на вентиле, а напряжение на нагрузке Uн равно нулю. Эта величина вдвое меньше, чем в полномостовом.

Недостатки:[10]

• Большая величина пульсаций

• Сильная нагрузка на вентиль (требуется диод с большим средним выпрямленным током)

• Низкий коэффициент использования габаритной мощности трансформатора (около 0,45) (не путать с КПД, который зависит от потерь в меди и потерь в стали и в однополупериодном выпрямителе почти такой же, как и в двухполупериодном).

33. Может строиться по мостовой или полумостовой схеме (когда, например, в случае выпрямления однофазного тока, используется специальный трансформатор с выводом от средней точки вторичной обмотки и вдвое меньшим количеством выпрямляющих ток элементов. Такая схема ныне применяется редко, так как более металлоёмка и имеет большее эквивалентное активное внутреннее сопротивление, то есть большие потери на нагрев обмоток трансформатора. При построении двухполупериодного выпрямителя со сглаживающим конденсатором следует всегда помнить, что переменное напряжение всегда измеряется в «действующем» значении, которое в 1,41 раза меньше его максимальной амплитуды, а выпрямленное напряжение на конденсаторе, в отсутствие нагрузки, будет всегда равно амплитудному. Это означает, что, например, при измеренном напряжении однофазного переменного тока 12 вольт до мостового однофазного выпрямителя со сглаживающим конденсатором, на конденсаторе, (в отсутствие нагрузки), будет напряжение до 17 вольт. Под нагрузкой выпрямленное напряжение будет ниже, (но не ниже величины действующего напряжения переменного тока, если внутреннее сопротивление трансформатора — источника переменного тока — принять равным нулю) и зависеть от ёмкости сглаживающего конденсатора

34. Три четвертьмоста параллельно (схема Миткевича)

Три четвертьмоста параллельно (Миткевича В. Ф.)Вид ЭДС на входе (точками) и на выходе (сплошной)(«Частично трёхполупериодный со средней точкой»). Площадь под интегральной кривой равна:Средняя ЭДС равна: На холостом ходу и близких к нему режимах ЭДС в ветви с наибольшей на данном отрезке периода обратносмещает (закрывает) диоды в ветвях с меньшей на данном отрезке периода ЭДС и относительное эквивалентное активное сопротивление равно сопротивлению одной ветви При увеличении нагрузки (уменьшении) появляются и увеличиваются отрезки периода на которых обе ветви работают на одну нагрузку параллельно и относительное эквивалентное активное сопротивление на этих отрезках равно В режиме короткого замыкания эти отрезки максимальны, но полезная мощность в этом режиме равна нулю.Частота пульсаций равна, где — частота сети.

35. Электрическим фильтром называется четырехполюсник, устанавливаемый между источником питания и нагрузкой и служащий для беспрепятственного (с малым затуханием) пропускания токов одних частот и задержки (или пропускания с большим затуханием) токов других частот.

Классификация фильтров

Название фильтра Диапазон пропускаемых частот

Низкочастотный фильтр (фильтр нижних частот)

Высокочастотный фильтр (фильтр верхних частот)

Полосовой фильтр (полосно-пропускающий фильтр)

Режекторный фильтр (полосно-задерживающий фильтр) и,

где

36. Перехо́дные процессы — процессы, возникающие в электрических цепях при различных воздействиях, приводящих к изменению их режима работы, то есть при действии различного рода коммутационной аппаратуры, например, ключей, переключателей для включения или отключения источника или приёмника энергии, при обрывах в цепи, при коротких замыканиях отдельных участков цепи и т. д.

Физическая причина возникновения переходных процессов в цепях — наличие в них катушек индуктивности и конденсаторов, то есть индуктивных и ёмкостных элементов в соответствующих схемах замещения. Объясняется это тем, что энергия магнитного и электрического полей этих элементов не может изменяться скачком при коммутации (процесс замыкания или размыкания выключателей) в цепи.

Переходный процесс в цепи описывается дифференциальным уравнением

• неоднородным (однородным), если схема замещения цепи содержит (не содержит) источники ЭДС и тока,

• линейным (нелинейным) для линейной (нелинейной) цепи.

37. Принужденная составляющая переходного (электрического) тока

Составляющая переходного электрического тока в линейной электрической цепи, равная разности переходного электрического тока и его свободной составляющей. Аналогично определяют принужденные составляющие переходных электрического напряжения, магнитного потока, электрического заряда и т.д.

Свободная составляющая тока описывает протекание тока в анализируемой схеме после коммутации в отсутствии источника энергии.

Свободная составляющая тока не зависит от формы напряжения источника.

Как находится свободная составляющая тока.

В дальнейшем свободная составляющая тока в обмотке возбуждения затухает, начинает проявляться действие реакции якоря и возрастать напряжение гармонической обмотки. Соответственно возрастает и ток в обмотке возбуждения возбудителя. В этих условиях можно принять, что и весь переходный процесс определяется переходным индуктивным сопртивлением x d, как и в первый момент включения.

И, наконец, свободная составляющая тока переходного процесса при ОЗЗ также не компенсируется, медленно затухает и также может вызвать смертельное поражение.

Во время переходного режима возникает свободная составляющая тока, связанная с изменением энергии в магнитном поле катушки.

38. Законы (правила) коммутации

Первый закон коммутации

Ток через индуктивный элемент L непосредственно до коммутации равен току во время коммутации и току через этот же индуктивный элемент непосредственно после коммутации, так как ток в катушке мгновенно измениться не может:

 

Второй закон коммутации

Напряжение на конденсаторе С непосредственно до коммутации равно напряжению во время коммутации и напряжению на конденсаторе непосредственно после коммутации, так как невозможен скачок напряжения на конденсаторе:

 

39. Начальные значения величин

Начальные значения (условия) — значения токов и напряжений в схеме при t=0.

Напряжения на индуктивных элементах и резисторах, а также токи через конденсаторы и резисторы могут изменяться скачком, то есть их значения после коммутации чаще всего оказываются не равными их значениям до коммутации.

Независимые начальные значения — это значения токов через индуктивные элементы и напряжений на конденсаторах, известные из докоммутационного режима

Зависимые начальные значения — это значения остальных токов и напряжений при в послекоммутационной схеме, определяемые по независимым начальным значениям из законов Кирхгофа.

40. Составим производную от свободного тока:

 

Следовательно, - производную от свободного тока можно заменить на а свободное напряжение на индуктивном элементе, — на Найдем интеграл от свободного тока:

Постоянная интегрирования взята здесь равной нулю, так как свободные составляющие не содержат не зависящих от времени слагаемых.Следовательно, интеграл от свободного тока можно заменить на свободное напряжение на конденсаторе — на В систему дифференциальных уравнений для свободных токов подставим вместо вместо Следовательно,

Уравнения (8.8) представляют собой систему алгебраических уравнений относительно и в отличие от исходной системы не содержат производных и интегралов.Переход от системы линейных дифференциальных уравнений к системе алгебраических уравнений называют алгебраизацией системы дифференциальных уравнений для свободных токов. Можно сказать, что система (8.8) есть результат алгебраизации системы дифференциальных уравнений (8.7).

25.

Для анализа нелинейных преобразований и расчета нелинейных цепей необходимо использовать вольтамперные характеристики нелинейных элементов в аналитической форме. Однако реальные характеристики имеют сложный вид, затрудняющий их описание с помощью достаточно простого аналитического выражения. Поэтому в электронике используются способы представления реальных характеристик относительно простыми функциями, приближенно отображающими истинные характеристики. Замена реальной характеристики приближенно представляющей ее функцией называется аппроксимацией.

Кусочно-линейная аппроксимация (рис.6.4).
При этом способе аппроксимации реальная характеристика заменяется ломаной линией, состоящей из 2-х прямолинейных отрезков. Аппроксимирующая функция в этом случае имеет вид:

(6.5)

Этот вид аппроксимации является довольно грубым, но он учитывает самые характерные черты нелинейной характеристики и используется при рассмотрении вопросов умножения, усиления мощных колебаний, детектирования, выпрямления переменных токов, т.е. для больших сигналов, где I - начальный ток (при u=0) и a - коэффициент, определяемый свойствами p-n перехода.

Идеальный вентиль не должен проводить обратный ток, т. е. его сопротивление для обратного направления тока должно быть практически бесконечным. Сопротивление же в прямом направлении должно отсутствовать

Рис.5-3 Вольт-амперная характеристика неуправляемого вентиля:

а — идеализированного; б — реального

 

Действующее и среднее значения несинусоидальных функций

Если функция тока синусоидальна, то ее действующее значение равно:

или после проведенных вычислений

.

В случае несинусоидальных функций тока

действующее значение тока равно:

.

При раскрытии двух интегралов от произведения двух синусов, если их аргументы не равны, то второй интеграл равен 0.

Действующимзначением периодической функции называется квадратный корень из суммы квадратов удерживаемых гармоник ряда Фурье.

В случае синусоидального тока среднее значение равно:

.

Если этот ток несинусоидальный, то среднее значение равно:

….

Среднимзначением периодического несинусоидального тока называют сумму средних значений гармоникряда Фурье данной функции.

Средние значения мощности:

· активной

· реактивной

· полной

Примечание. В цепях периодического несинусоидального тока:

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: