Погрешность, классификация погрешностей.




03.11.2021

Преподаватель: Земляная С.Н.

ГруппаТУ2

Предмет Электротехника

Урок № 26

Тема программы: Электрические измерения и электроизмерительные приборы.

Тема урока: Методы измерений. Погрешности измерений и классы точности. Измерение силы тока и напряжения. Шунты и добавочные резисторы.

https://www.iklp.ru/d1/3.11%20МДК%2001.01%20уроки35-36.pdf

https://rykovodstvo.ru/exspl/40980/index.html?page=12

 

Ознакомиться с материалом сайта, подготовить сообщение по теме:

1. Метод измерений. Классификация методов измерения.

2. Погрешность, классификация погрешностей.

Вопросы самопроверки:
1.Как включаются в электрическую цепь амперметр и вольтметр?

2.Какое сопротивление называется шунтирующим? Приведите формулу для расчета сопротивления шунта к амперметру.

3.В каких случаях амперметры включаются в измерительную цепь без шунтов, вольтметры – без добавочных сопротивлений?

4.В каких случаях применяются наружные и внутренние шунты?

5.Какие шунты называют многопредельными?

6.Приведите формулу расчета добавочного сопротивления к вольтметру.

7.Каково назначение шунтов и добавочных резисторов?

8.Перечислите способы подключения шунтов и добавочных резисторов.

 

Конспект.

Метод измерений. Классификация методов измерения.

Метод измерений – совокупность приёмов использования принципов и средств измерения. Все существующие методы измерений условно делятся на 2 основных вида:

1. Метод непосредственной оценки – значения определяемой величины определяется непосредственно по отчетному устройству прибора или измерительного устройства прямого действия.

2.Метод сравнения с мерой– измеряется величина, сравнивающаяся с величиной заданной мерой. При этом сравнение может быть переходное, равновремённое, разновремённое и другие.

Метод сравнения с мерой делится на следующие два метода:

- Нулевой метод - предусматривает одновременное сравнение измеряемой величины и меры, а результирующий эффект воздействия доводится с помощью прибора сравнения до нуля

- Дифференциальный - на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, пример – схема неуравновешенного моста.

Оба эти метода делятся на следующие:

1) Метод противопоставления – измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения с помощью которого устанавливаются соотношения между этими величинами. (во сколько раз?)

2) Метод замещения – измеряемую величину замещают известной величиной, воспроизводимой мерой. Широко применяется при измерении неэлектрических величин, при этом методе одновременно или периодически сравнивается измеряемая величина с мерной величиной, а далее измеряют разницу между ними, используя совпадение отметок шкалы или совпадение периодических сигналов по времени.

3) Метод совпадений – разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов.

Из всех методов измерения метод сравнения с мерой является более точным по сравнению с методом непосредственной оценки, причём дифференциальный метод измерения является более точным, чем нулевой метод измерения.

Недостатком нулевого метода измерения является необходимость иметь большой число мер, различных сочетаний для воспроизведения мерных величин кратных измеряемым.

Погрешность, классификация погрешностей.

Результат измерений физической величины всегда отличается от истинного значения на некоторую величину, которая называется погрешностью.

КЛАССИФИКАЦИЯ: 1. По способу выражения: абсолютные, приведенные и относительные 2. По источнику возникновения: методические и инструментальные. 3. По условиям и причинам возникновения: основные и дополнительные 4. По характеру изменения: систематические и случайные. 5. По зависимости от входной измеряемой величины: аддитивные и мультипликативные 6. По зависимости от инерционности: статические и динамические.

Абсолютная, относительная и приведенная погрешности.

Абсолютная погрешность — это разность между измеренным и действительным значениями измеряемой величины.

Абсолютную погрешность выражают в единицах измеряемой величины. Абсолютную погрешность, взятую с обратным знаком, называют поправкой.

Относительная погрешность р равна отношению абсолютной погрешности к действительному значению измеряемой величины и выражается в процентах:

Приведенная погрешность измерительного прибора - это отношение абсолютной погрешности к номинальному значению.

Номинальное значение для прибора с односторонней шкалой равно верхнему пределу измерения, для прибора с двусторонней шкалой (с нулем посередине) — арифметической сумме верхних пределов измерения:

 

Измерительные шунты


Шунт является простейшим измерительным преобразователем тока в напряжение. Измерительный шунт представляет собой четырехзажимный резистор. Два входных зажима шунта, к которым подводится ток I, называются токовыми, а два выходных зажима, с которых снимается напряжение U, называются потенциальными.

Измерительный шунт характеризуется номинальным значением входного тока Iном и номинальным значением выходного напряжения Uном. Их отношение определяет номинальное сопротивление шунта:


Rш = Uном / Iном  

Шунты применяются для расширения пределов измерения измерительных механизмов по току, при этом большую часть измеряемого тока пропускают через шунт, а меньшую – через измерительный механизм. Шунты имеют небольшое сопротивление и применяются, главным образом, в цепях постоянного тока с магнитоэлектрическими измерительными механизмами.

Схема соединения измерительного механизма с шунтом
На рис. приведена схема включения магнитоэлектрического механизма измерительного прибора с шунтом Rш. Ток Iи протекающий через измерительный механизм, связан с измеряемым током I зависимостью

 

Iи = I (Rш / Rш + Rи)  

где Rи – сопротивление измерительного механизма.

Если необходимо, чтобы ток Iи был в n раз меньше тока I, то сопротивление шунта должно быть:

 

Rш = Rи / (n – 1)  

где n = I / Iи – коэффициент шунтирования.
Шунты изготовляют из манганина. Если шунт рассчитан на небольшой ток (до 30 А), то его обычно встраивают в корпус прибора (внутренние шунты). Для измерения больших токов используют приборы с наружными шунтами. В этом случае мощность, рассеиваемая в шунте, не нагревает прибор.
На рис. 2 показан наружный шунт на 2000 А Он имеет массивные наконечники из меди, которые служат для отвода тепла от манганиновых пластин, впаянных между ними. Зажимы шунта А и Б – токовые.
Измерительный механизм присоединяют к потенциальным зажимам В и Г, между которыми и заключено сопротивление шунта. При таком включении измерительного механизма устраняются погрешности от контактных сопротивлений.

Рис.2. Наружный шунт
Наружные шунты обычно выполняются калиброванными, т. е. рассчитываются на определенные токи и падения напряжения. Калиброванные шунты должны иметь номинальное падение напряжения 10, 15, 30, 50, 60, 75, 100, 150 и 300 мВ.

Шунты разделяются на классы точности 0,02; 0,05; 0,1; 0,2 и 0,5. Число, определяющее класс точности, обозначает допустимое отклонение сопротивления шунта в процентах его номинального значения.



2.Добавочные резисторы

Добавочные резисторы являются измерительными преобразователями напряжения в ток, а на значение тока непосредственно реагируют измерительные механизмы вольтметров.
Добавочные резисторы служат для расширения пределов измерения по напряжению вольтметров различных систем и других приборов, имеющих параллельные цепи, подключаемые к источнику напряжения. Сюда относятся, например, ваттметры, счетчики энергии, фазометры и т. д.
Добавочный резистор включают последовательно с измерительным механизмом (рис. 3). Ток Iи в цепи, состоящий из измерительного механизма с сопротивлением Rи и добавочного резистора с сопротивлением Rд, составит:

 

Iи = U / (Rи + Rд)  
Uном / Rи = n Uном / (Rи + Rд)  

где U – измеряемое напряжение.
Если вольтметр имеет предел измерения Uном и сопротивление измерительного механизма Rи и при помощи добавочного резистора Rд надо расширить предел измерения в n раз, то, учитывая постоянство тока Iи, протекающего через измерительный механизм вольтметра, можно записать:


 

откуда Rд = Rи (n – 1)
Добавочные резисторы изготовляются обычно из изолированной манганиновой проволоки, намотанной на пластины или каркасы из изоляционного материала. Они применяются в цепях постоянного и переменного тока.


Рис. 4. Схема соединения измерительного механизма с добавочным резистором
При применении добавочных резисторов не только расширяются пределы измерения вольтметров, но и уменьшается их температурная погрешность.
Добавочные резисторы бывают внутренние и наружные. Последние выполняются в виде отдельных блоков и подразделяются на индивидуальные и калиброванные. Индивидуальный резистор применяется только с тем прибором, который с ним градуировался. Калиброванный резистор может применяться с любым прибором, номинальный ток которого равен номинальному току добавочного резистора.


Калиброванные добавочные резисторы делятся на классы точности 0,01; 0,02; 0,05; 0,1; 0,2; 0,5 и 1,0. Они выполняются на номинальные токи от 0,5 до 30 мА.

Добавочные резисторы применяются для преобразования напряжений до 30 кВ.

Изменение пределов измерения амперметра и вольтметра(расчет шунтов и добавочных резисторов)
В практике электрических измерений встречается необходимость измерять токи, напряжения и другие величины в очень широком диапазоне их значений. Для измерения малых токов и напряжений используется гальванометр.
Допустим, гальванометр может измерять максимальную силу тока Iг, а нам необходимо измерить силу тока I. Тогда ток I – Iг необходимо пропустить не через гальванометр (микроамперметр), а рядом, по параллельной цепи (рис. 8.6, а). Такую электрическую цепь, включаемую параллельно гальванометру и служащую для расширения пределов измерения амперметра, называют шунтом. В этом случае возникает необходимость рассчитать сопротивление шунта и проградуировать шкалу гальванометра в новых значениях силы тока.

Пусть I – сила тока, которую необходимо измерить, Iг – максимальная сила тока, которую может измерить гальванометр. Тогда Iш = I – Iг – сила тока, которая должна протекать через шунт. Обозначим Rг – сопротивление гальванометра, Rш – сопротивление шунта. По законам параллельного соединения проводников Uш = Uг.

Здесь n = I/Iг – коэффициент шунтирования. Рассчитав по формуле сопротивление шунта, подбираем шунт. Для изготовления шунтов на небольшие токи используют провод из манганина, а на большие – манганиновые пластины (манганин обладает малым температурным коэффициентом сопротивления и поэтому сопротивление шунта почти не изменяется при нагревании протекающим током.
Для расширения пределов измерения гальванометра при использовании его в качестве вольтметра последовательно с гальванометром включают добавочный резистор (рис. 8.8, а). Рассчитаем сопротивление добавочного резистора.

Пусть U – напряжение, которое надо измерить вольтметром, Uг – максимальное напряжение, которое может измерить гальванометр. Тогда Uд = U – Uг – напряжение, которое должно падать на добавочном резисторе. Обозначим Rг – сопротивление гальванометра, Rд – сопротивление добавочного резистора. По законам последовательного соединения проводников Iг = Iд или Uг/Rг = Uд/Rд.

Отсюда с учетом напряжения на добавочном резисторе получим:

Rд = Rг (U-Uг)/Uг = Rг (n – 1)  

где n = U/Uг.

Рассчитав сопротивление добавочного резистора, выбирают соответствующий постоянный резистор с учетом его мощности рассеяния. Далее градуируют шкалу гальванометра в новых значениях напряжения. Добавочные резисторы бывают встраиваемые в корпус прибора и наружные. На рисунках 8.8, б и 8.8, в показаны различные способы подключения встроенных добавочных резисторов. Добавочные резисторы для работы на переменном токе должны иметь бифилярную намотку (проволочный резистор, имеющий бифилярную намотку, не обладает индуктивным сопротивлением).

Способы подключения встроенных добавочных резисторов

Шунты и добавочные резисторы в основном применяют с магнитоэлектрическими измерительными механизмами.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-12-15 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: