Деление десятичных дробей




Из истории десятичных и обыкновенных дробей

 

В Древнем Китае уже пользовались десятичной системой мер, обозначали дробь словами, используя меры длины чи: цуни, доли, порядковые, шерстинки, тончайшие, паутинки. Дробь вида 2,135436 выглядела так: 2 чи, 1 цунь, 3 доли, 5 порядковых, 4 шерстинки, 3 тончайших, 6 паутинок. Так записывались дроби на протяжении двух веков, а в V веке китайский ученый Цзю-Чун-Чжи принял за единицу не чи, а чжан = 10 чи, тогда эта дробь выглядела так: 2 чжана, 1 чи, 3 цуня, 5 долей, 4 порядковых, 3 шерстинки, 6 тончайших, 0 паутинок.

Предшественниками десятичных дробей являлись шестидесятеричные дроби древних вавилонян. Некоторые элементы десятичной дроби встречаются в трудах многих ученых Европы в 12, 13, 14 веках.

Десятичную дробь с помощью цифр и определенных знаков попытался записать арабский математик ал-Уклисиди в X веке. Свои мысли по этому поводу он выразил в "Книге разделов об индийской арифметике".

В XV веке, в Узбекистане, вблизи города Самарканда жил математик и астроном Джемшид Гиясэддин ал-Каши (дата рождения неизвестна). Он наблюдал за движением звезд, планет и Солнца, в этой работе ему необходимы были десятичные дроби. Ал-Каши написал книгу "Ключ к арифметике" (была издана в 1424 году), в которой он показал запись дроби в одну строку числами в десятичной системе и дал правила действия с ними. Ученый пользовался несколькими способами написания дроби: то он применял вертикальную черту, то чернила черного и красного цветов. Но этот труд до европейских ученых своевременно не дошел.

Примерно в это же время математики Европы также пытались найти удобную запись десятичной дроби. В книге "Математический канон" французского математика Ф. Виета (1540-1603) десятичная дробь записана так 2 135436 - дробная часть и подчеркивалась и записывалась выше строки целой части числа.

В 1585 г., независимо от ал-Каши, фламандский ученый Симон Стевин (1548-1620) сделал важное открытие, о чем написал в своей книге "Десятая" (на французском языке "De Thiende, La Disme"). Эта маленькая работа (всего 7 страниц) содержала объяснение записи и правил действий с десятичными дробями. Он писал цифры дробного числа в одну строку с цифрами целого числа, при этом нумеруя их. Например, число 12,761 записывалось так:

 

1207À6Á1Â12

или число 0,3752 записывалось так:

37‚5ƒ2„.

Именно Стевина и считают изобретателем десятичных дробей.

Запятая в записи дробей впервые встречается в 1592г., а в 1617г. шотландский математик Джон Непер предложил отделять десятичные знаки от целого числа либо запятой, либо точкой.

Современную запись, т.е. отделение целой части запятой, предложил Кеплер (1571) - (1630 гг.).

В странах, где говорят по-английски (Англия, США, Канада и др.), и сейчас вместо запятой пишут точку, например: 2.3 и читают: два точка три.

 


Действия над десятичными дробями

 

Сложение (вычитание) десятичных дробей

 

При сложении (вычитании) десятичных дробей пользуются следующим правилом:

а) уравнивают количество знаков после запятой в обеих дробях (с помощью нулей);

б) записывают дроби друг под другом так, чтобы запятая оказалась под запятой;

в) выполняют действие, не обращая внимания на запятую;

г) подставляют в результате запятую под запятыми в данных дробях

 

Пример: Сложить 5,607 и 4,1

1. Уравниваем количество знаков после запятой в обеих дробях: 5,607 и 4,100

2. Записываем дроби друг под другом так, чтобы запятая оказалась под запятой:

+
5,607

4,100

3,4. Выполняем действие, не обращая внимания на запятую: 9,707

 

Умножение десятичных дробей

Умножение десятичной дроби на натуральное число

 

При умножении десятичных дробей на натуральное число используют правило

а) умножают дробь на это число, не обращая внимания на запятую;

б) в полученном произведении отделить запятой столько цифр справа, сколько их отделено в данной дроби

Пример: Умножить 8,607 на 5

1. Умножаем дробь на число, не обращая внимания на запятую:

х
8,607

43,035.

2. В полученном произведении отделяем 3 знака справа: 43,035

Умножение десятичных дробей

а) выполняют умножение, не обращая внимания на запятые;

б) отделяют запятой столько цифр справа, сколько их стоит после запятой в обоих множителях вместе

Пример: Умножить 1,25 на 2,04

1. Записываем дроби друг под другом так, чтобы запятая оказалась под запятой:

х
1,25

2,04

+
500

250.

2,5500.

2. В полученном произведении отделяем 4 знака справа: 2,5500


Деление десятичных дробей



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: