Принципы классификации химико-технологических процессов.
Совокупность основных факторов (параметров), влияющих на скорость процесса, выход и качество продукта, называется технологическим режимом Параметры технологического режима определяют принципы конструирования соответствующих реакторов. Поэтому характер и значение параметров технологического режима положены в основу классификации химико-технологических процессов. По значениям параметров технологического режима процессы можно разделить на низко- и высокотемпературные, каталитические и некаталитические, происходящие под вакуумом, при нормальном и высоком давлении и т.д.
При изучении общих закономерностей химической технологии принято делить процессы и соответствующие им аппараты прежде всего по агрегатному (фазовому) состоянию взаимодействующих веществ. По этому признаку все системы взаимодействующих частиц и соответствующие им технологические процессы на гомогенные (однородные) и гетерогенные (неоднородные)
В гомогенных системах все реагирующие вещества находятся в одной какой-либо фазе: газовой (г), жидкой (ж) или твердой (т). В гетерогенных системах реагирующие вещества находятся в разных фазах, газ-жидкость (г – ж), газ-твердое (г – т), жидкость-твердое (ж – т), две несмешивающиеся жидкости (ж – ж) и две твердые фазы (т – т). Наиболее часто в промышленных процессах встречаются системы г – ж, г – т и ж – т. Иногда в промышленных процессах участвуют три или четыре фазы, например, г – ж – т, г – ж – ж, г – ж – т – т.
Обычно за отдельные фазы принимают только основные компоненты и не учитывают наличие малых количеств примесей. Так, например, в системах ж – ж и ж – т часто содержится газовая фаза, поскольку процессы проводятся в присутствии воздуха или других газов, или же в присутствии паров, так как жидкие компоненты частично испаряются. Но газовую фазу учитывают только в том случае, если она оказывает существенное влияние на процесс. Некоторые процессы начинаются в гомогенной среде, а затем в результате появления новой фазы система переходит в гетерогенную. Например, при получении полистирола к жидкому стиролу добавляют перекись бензоила и нагревают, при этом происходит полимеризация стирола с образованием новой фазы – твердого полистирола.
|
Скорость реакции в гомогенных системах более высокая, чем в гетерогенных, так как в первом случае реакции протекают на уровне отдельных молекул (так называемый микроуровень). Поэтому в прак- тических условиях обычно стремятся перевести гетерогенный процесс в гомогенный (путем плавления или растворения твердых реагирующих веществ, абсорбции или конденсации газов).
Гомогенные процессы
Строго гомогенные процессы, т.е. процессы, протекающие в одной фазе, встречаются в промышленности сравнительно редко, так как любое вещество содержит следы различных примесей, находящихся в другой фазе. Например, в одном миллилитре чистого горного воздуха содержится около тысячи взвешенных частиц, а в одном миллилитре дистиллированной воды до 20 тыс. частиц. Поскольку следы инородных примесей часто активно влияют на ход процесса как катализаторы или ингибиторы, большинство процессов лишь условно можно отнести к гомогенным. Число таких условно гомогенных процессов велико в технологии и неорганических, и органических веществ. Например, окисление сероводорода и паров серы кислородом воздуха в производстве серной кислоты
|
2H2S +3O2 = 2SO2 + 2H2O + Q
S + O2 = SO2 + Q
протекает в гомогенной газовой фазе, несмотря на наличие в воздухе большого числа твердых частиц. К числу гомогенных процессов относят также окисление окиси азота до двуокиси азота кислородом воздуха в производстве азотной кислоты и многие другие.
2NO + O2 = 2NO2 + Q
Особенно многочисленны и разнообразны гомогенные процессы в газовой фазе, осуществляемые в технологии органических веществ. Примером этому может служить сжигание всевозможных видов га- зообразного топлива и, в частности, природного газа. Процесс сжигания различного жидкого топлива также в большинстве случаев является гомогенным процессом, так как всякое жидкое топливо предварительно испаряется, а образовавшиеся пары затем окисляются кислородом воздуха.
В технологии органических веществ сущность многих гомогенных процессов в газовой фазе состоит в том, что газообразные исходные вещества или пары, полученные испарением жидкости, обрабатываются тем или иным газообразным компонентом: хлором, сернистым ангидридом, окислами азота и др., при этом обычно протекают параллельные и последовательные реакции.
Например, при термическом воздействии хлора на метан при 250…400 °С получают ряд соединений
СH4 + Cl2 = HCl + CH3Cl (хлористый метил)
СH3Cl + Cl2 = HCl + CH2Cl2 (хлористый метилен)
CH2Cl2 + Cl2 = HCl + CHCl3 (хлороформ)
CHCl3 + Cl2 = HCl + CCl4 (четыреххлористый углерод)
Из большого числа процессов, идущих в жидкой фазе, к гомогенным можно отнести процессы нейтрализации водных растворов кислот водными растворами щелочей. Например, при взаимодействии аммиачной воды и серной кислоты в коксохимическом производстве получают сульфат аммония
|
2NH4OH + H2SO4 = (NH4)2SO4 + 2Н2О.
К гомогенным реакциям относятся также некоторые обменные реакции, проходящие в растворах
KCl + NaNO3 = NaCl + KNO3.
В жидкой фазе получают простые и смешанные эфиры из спиртов, например, при разложении этилсульфата метиловым спиртом и многие другие.
Основные закономерности гомогенных процессов
Гомогенные процессы, как правило, идут в кинетической области, т.е. общая скорость процесса определяется скоростью химической реакции, поэтому закономерности, установленные для реакций, применимы и к процессам, идущим в газовой и жидкой среде. С точки зрения кинетики, химические реакции можно классифицировать по молекулярности, т. е по числу молекул, принимающих одновременное участие в элементарном акте химического превращения, и по порядку реакции. Порядок реакции равен сумме показателей степеней при концентрациях реагирующих веществ в кинетическом уравнении реакции. Чаще всего порядок реакции не совпадает с ее молекулярностью. По молекулярности реакции подразделяются на моно -, би- и тримолекулярные и по порядку - первого, второго и дробного порядка.
1. Одномолекулярные (мономолекулярным) реакции. К ним относятся:
– реакции внутримолекулярных перегруппировок А→Д, например, изомеризация, инверсия;
– реакции разложения А →Д +Д′.
В виде примера можно указать крекинг этана С2Н6 → С2Н4 +Н2
2. Двумолекулярные (бимолекулярные), в которых элементарный акт осуществляется в результате встречи двух одноименных (2А) или разноименных (А+В) молекул исходных веществ. Бимолекулярные реакции в свою очередь можно подразделить на:
– реакции присоединения А +А →АА, А +В → АВ и разложения 2А→Д +Д′
– реакции замещения или обмена А +ВВ′ → АВ + В′
– реакции двойного обмена АА′ +ВВ′ → АВ + А′В′
К бимолекулярным реакциям присоединения относятся присоединение атома или радикала к молекуле непредельного соединения и ассоциация насыщенных молекул. Например, С2Н4 +Н2 →С2Н6, Н2 +І2 →2НІ
К реакциям замещения или обмена принадлежит большое количество реакций атомов и радикалов с различными молекулами. Типичная реакция двойного обмена в растворе КСl +NаNО3 →ΝаСl + КNО3
3.Трехмолекулярные, где встречаются и вступают в химическое взаимодействие три молекулы, могут быть реакции присоединения, обменного типа и реакции рекомбинации.
3А →Д, 2А +В →Д +Д′… А +А′ +В → Д +Д′….
Так протекает взаимодействие хлорного железа и хлористого олова в водном растворе 2FеСl3 +SnСl2 ↔2FеСl2 + SnСl4
Каждому из перечисленных типов реакций соответствует свое кинетическое уравнение, связывающее концентрации реагентов со временем.
Влияние концентраций реагирующих веществ определяется законом действия масс, который является основным законом химической кинетики.
Зависимость скорости химической реакции от температуры сильно изменяется при возрастании порядка реакции. С ростом концентрации исходных веществ скорость реакции до достижения равновесного выхода увеличивается тем сильнее, чем выше порядок реакции.
Скорость реакции наиболее сильно зависит от концентраций тех реагирующих веществ, которые входят в наибольшем количестве в уравнения химических реакций. При этом скорость многомолекулярных реакций с повышением концентраций будет возрастать быстрее, чем скорость реакций более низших порядков.
Для повышения концентраций реагентов в гомогенных системах применяются следующие методы:
– для газов: выделение из газовой смеси в более концентрированном виде, сжатие или сжижение, растворение газов для проведения реакции в растворе;
– для жидкостей: выпаривание, вымораживание, что позволяет получить раствор более насыщенный реагентами, или же дополнительный ввод реагента в раствор.
Давление влияет на увеличение скорости как прямой, так и обратной реакции пропорционально числу реагирующих молекул. Таким образом, давление влияет, в основном, через увеличение концентраций реагентов, что практически относится к реакциям, идущим в газовой среде, особенно с уменьшением объема. Давление на скорость реакций в растворах влияет очень мало.
Перемешивание ускоряет процессы, протекающие в диффузионной области вследствие замены медленной молекулярной диффузии быстрым конвективным переносом реагентов в зону реакции.
Типичные аппараты для проведения гомогенных процессов.
Для гомогенных реакций, проводимых в газовой среде, можно использовать реакционные аппараты простого устройства, в частности, полый объем без перемешивания (например, окислительный объем при окислении 2NО +О2→2NО2) или с перемешиванием (например, печь с горелками при синтезе хлористого водорода). Для процессов в жидкой фазе также используются реакционные емкости без перемешивания (баки, цистерны, котлы) и смесители с механическим (лопастные, пропеллерные и др. виды мешалок), пневматическим, струевым, центробежным и прочими видами перемешивания. Перемешивание обеспечивает не только получение однородных физических смесей, но и интенсификацию многих реакций и идущих при этом процессов тепло и массообмена. При работе под давлением применяют автоклавы.