Оценивание параметров и проверка гипотез о нормальном распределении
Расчетная работа
Выполнил Шеломанов Р.Б.
Кафедра математической статистики и эконометрики
Московский государственный университет экономики, статистики и информатики
Москва 1999
ЗАДАНИЕ № 23
Продолжительность горения электролампочек (ч) следующая:
По выборочным данным, представленным в заданиях №1-30, требуется:
1* Построить интервальный вариационный ряд распределения;
Построение интервального вариационного ряда распределения
Max: 769
Min: 733
R=769-733=36
H= R / 1+3,32 lg n=36/(1+3,32lg100)=4,712
A1= x min - h/2=730,644
B1=A1+h; B2=A2+h
2* Вычислить выборочные характеристики по вариационному ряду:
среднюю арифметическую (x ср.), центральные моменты (мю к, к=1,4), дисперсию (S^2), среднее квадратическое отклонение (S), коэффициенты асимметрии (Ас) и эксцесса (Ек), медиану (Ме), моду (Мо), коэффициент вариации(Vs);
Вычисление выборочных характеристик распределения
Di=(xi- xср)
xср = å xi mi/ å mi
xср = 751,7539
Вспомогательная таблица ко второму пункту расчетов
Выборочный центральный момент К -го порядка равен
M k = (xi - x)^k mi/ mi
В нашем примере:
|
Центр момент 1 | 0,00 |
Центр момент 2 | 63,94 |
Центр момент 3 | -2,85 |
Центр момент 4 | 12123,03 |
Выборочная дисперсия S^2 равна центральному моменту второго порядка:
В нашем примере:
S^2= 63,94
Ввыборочное среднее квадратическое отклонение:
В нашем примере:
S= 7,996
Выборочные коэффициенты асимметрии Ас и эксцесса Fk по формулам
Ac = m3/ S^3;
В нашем примере:
Ас =-0,00557
Ek = m4/ S^4 -3;
В нашем примере:
Ek = -0,03442
Медиана Ме - значение признака x (e), приходящееся на середину ранжированного ряда наблюдений (n = 2l -1). При четном числе наблюдений(n= 2l) медианой Ме является средняя арифметическая двух значений, расположенных в середине ранжированного ряда: Me=(x(e) + x(e+1) /2
Если исходить из интервального ряда, то медиану следует вычислять по ормуле
Me= a me +h * (n/2 - mh(me-1) / m me
где mе- означает номер медианного интервала, (mе -1) - интервала, редшествующего медианому.
В нашем примере:
Me=751,646
Мода Мо для совокупности наблюдений равна тому значению признака, которому соответствует наибольшая частота.
Для одномодального интервального ряда вычисление моды можно производить по формуле
Mo = a mo + h * (m mo- m(mo-1))/2 m mo- m(mo-1) - m(mo+1)
где мо означает номер модального интервала (интервала с наибольшей частотой), мо-1, мо+1- номера предшествующего модальному и следующего за ним интервалов.
В нашем примере:
Mo = 751,49476
Так как Хср, Mo Me почти не отличаются друг от друга, есть основания предполагать теоретическое распределение нормальным.
Коэффициент вариации Vs = S/ x * 100 %= 3.06%
В нашем примере:
Vs= 1,06%
3* Построить гистограмму, полигон и кумуляту.
Графическое изображение вариационных рядов
|
Для визуального подбора теоретического распределения, а также выявления положения среднего значения (x ср.) и характера рассеивания (S^2 и S) вариационные ряды изображают графически.
Полигон и кумулята применяются для изображения как дискретных, так и интервальных рядов, гистограмма – для изображения только интервальных рядов. Для построения этих графиков запишем вариационные ряды распределения (интервальный и дискретный) относительных частот (частостей)
Wi=mi/n, накопленных относительных частот Whi и найдем отношение Wi/h, заполнив таблицу 1.4.