Почему галактики разные?




РЕФЕРАТ

на тему:"Классификация галактик. Закон Хаббла."

 

Выполнила: ученица 10А класса

Кляпышева Анастасия

2021.

«В 1744 году швейцарский астроном де Шезо и независимо от него в 1826 году Ольберс сформулировали следующий парадокс, — пишет в своей книге Т. Редже, — который привел к кризису тогдашних наивных космологических моделей. Представим себе, что пространство вокруг Земли бесконечно, вечно и неизменно и что оно равномерно заполнено звездами, причем их плотность в среднем постоянна. С помощью несложных вычислений Шезо и Ольберс показали, что полное количество света, посылаемое на Землю звездами, должно быть бесконечным, из-за чего ночное небо будет не черным, а, мягко говоря, залито светом. Чтобы избавиться от своего парадокса, они предположили существование в космосе обширных блуждающих непрозрачных туманностей, заслоняющих наиболее отдаленные звезды. На самом деле так выйти из положения нельзя: поглощав свет от звезд, туманности поневоле нагревались бы и сами излучали свет так же, как и звезды.

Итак, если справедлив космологический принцип, то мы не можем принять идею Аристотеля о вечной и неизменяющейся Вселенной. Здесь, как и в случае относительности, природа, похоже, предпочитает в своем развитии симметрию, а не мнимое Аристотелево совершенство».

Однако самый серьезный удар незыблемости Вселенной был нанесен не теорией эволюции звезд, а результатами измерений скоростей удаления галактик, полученными великим американским астрономом Эдвином Хабблом.

Хаббл (1889—1953) родился в небольшом городке Маршфилд в штате Миссури в семье страхового агента Джона Пауэла Хаббла и его супруги Виржинии Ли Джеймс. Астрономией Эдвин заинтересовался рано, вероятно, под влиянием своего деда по матери, построившего себе небольшой телескоп."

В 1906 году Эдвин окончил школу. Шестнадцатилетним юношей Хаббл поступил в Чикагский университет, входивший тогда в первую десятку лучших учебных заведений США. Там работал астроном Ф.Р. Мультон, автор известной теории происхождения Солнечной системы. Он оказал большое влияние на дальнейший выбор Хаббла.

После окончания университета Хабблу удалось получить стипендию Родса и на три года уехать в Англию для продолжения образования. Однако вместо естественных наук ему пришлось изучать в Кембридже юриспруденцию.

Летом 1913 года Эдвин возвратился на родину, но юристом так и не стал. Хаббл стремился к науке и вернулся в Чикагский университет, где на Йеркской обсерватории под руководством профессора Фроста подготовил диссертацию на степень доктора философии. Его работа представляла собой статистическое исследование слабых спиральных туманностей в нескольких участках неба и особенной оригинальностью не отличалась. Но уже тогда Хаббл разделял мнение о том, что «спирали — это звездные системы на расстояниях, часто измеряемых миллионами световых лет».

В это время в астрономии приближалось большое событие — обсерватория Маунт-Вилсон, которую возглавлял замечательный организатор науки Д.Э. Хейл, готовилась к вводу в строй крупнейшего телескопа — стодюймового рефлектора (250-сантиметрового — Прим. авт.). Приглашение работать в обсерватории среди других получил и Хаббл. Однако весной 1917 года, когда он заканчивал свою диссертацию, США вступили в Первую мировую войну. Молодой ученый отклонил приглашение и записался добровольцем в армию. В составе Американского экспедиционного корпуса майор Хаббл попал в Европу осенью 1918 года, незадолго до окончания войны, и в боевых действиях принять участие не успел. Летом 1919 года Хаббл демобилизовался и поспешил в Пасадену, чтобы принять приглашение Хейла.

На обсерватории Хаббл начал изучать туманности, сосредоточившись сначала на объектах, видимых в полосе Млечного Пути.

В хрестоматии «Книга первоисточников по астрономии и астрофизике, 1900—1975» К. Ланга и О. Гингерича (США), где воспроизведены самые выдающиеся исследования за три четверти двадцатого столетия, помещены три работы Хаббла, и первая из них — работа по классификации внегалактических туманностей. Две другие относятся к установлению природы этих туманностей и открытию закона красного смещения.

В 1923 году Хаббл приступил к наблюдениям туманности в созвездии Андромеды на шестидесяти и стодюймовых рефлекторах. Ученый сделал вывод, что большая Туманность Андромеды действительно другая звездная система. Такие же результаты Хаббл получил и для туманности МОС 6822 и туманности в Треугольнике.

Хотя об открытии Хаббла вскоре стало известно ряду астрономов, официальное сообщение последовало лишь 1 января 1925 года, когда на съезде Американского астрономического общества Г. Рессел зачитал доклад Хаббла. Известный астроном Д. Стеббинс писал, что доклад Хаббла «во сто крат расширил объем материального мира и с определенностью решил долгий спор о природе спиралей, доказав, что это гигантские совокупности звезд, почти сравнимые по размерам с нашей собственной Галактикой». Теперь Вселенная предстала перед астрономами пространством, заполненным звездными островами — галактиками.

Уже одно установление истинной природы туманностей определило место Хаббла в истории астрономии. Но на его долю выпало и еще более выдающееся достижение — открытие закона красного смещения.

Спектральные исследования спиральных и эллиптических «туманностей» были начаты в 1912 году на основе таких соображений1 если они действительно расположены за пределами нашей Галактики, то они не участвуют в ее вращении и поэтому их лучевые скорости будут свидетельствовать о движении Солнца. Ожидалось, что эти скорости будут порядка 200—300 километров в секунду, т. е. будут соответствовать скорости движения Солнца вокруг центра Галактики.

Между тем, за несколькими исключениями, лучевые скорости галактик оказались гораздо больше: они измерялись тысячами и десятками тысяч километров в секунду.

В середине января 1929 года в «Труды» Национальной академии наук США Хаббл представил небольшую заметку под названием «О связи между расстоянием и лучевой скоростью внегалактических туманностей». В то время Хаббл уже имел возможность сопоставить скорость движения галактики с расстоянием до нее для 36 объектов. Оказалось, что эти две величины связаны условием прямой пропорциональности: скорость равна расстоянию, умноженному на постоянную Хаббла.

Это выражение получило название закона Хаббла. Численное значение постоянной Хаббла ученый в 1929 году определил в 500 км/(с х Мпк). Однако он ошибся в установлении расстояний до галактик. После многократных исправлений и уточнений этих расстояний численное значение постоянной Хаббла сейчас принимается равным 50 км/(с х Мпк).

На обсерватории Маунт-Вилсон началось определение лучевых скоростей все более удаленных галактик. К 1936 году М. Хьюмасон публикует данные для ста туманностей. Рекордную скорость в 42 000 километров в секунду удалось зарегистрировать у члена далекого скопления галактик в Большой Медведице. Но это уже было пределом возможностей стодюймового телескопа. Нужны были более мощные инструменты.

«Можно подойти к вопросу о хаббловском расширении космоса, используя более привычные, интуитивные образы, — считает Т.Редже. — Например, представим себе солдат, выстроенных на какой-нибудь площади с интервалом 1 метр. Пусть затем подается команда раздвинуть за одну минуту ряды так, чтобы этот интервал увеличился до 2 метров. Каким бы образом команда ни выполнялась, относительная скорость двух рядом стоявших солдат будет равна 1 м/мин, а относительная скорость двух солдат, стоявших друг от друга на расстоянии 100 метров, будет 100 м/ мин, если учесть, что расстояние между ними увеличится от 100 до 200 метров. Таким образом, скорость взаимного удаления пропорциональна расстоянию. Отметим, что после расширения рядов остается справедливым космологический принцип: «галактики-солдаты» по-прежнему распределены равномерно, и сохраняются те же пропорции между различными взаимными расстояниями.

Единственный недостаток нашего сравнения заключается в том, что на практике один из солдат все время стоит неподвижно в центре площади, в то время как остальные разбегаются со скоростями тем большими, чем больше расстояния от них до центра. В космосе же нет верстовых столбов, относительно которых можно было бы провести абсолютные измерения скорости; такой возможности мы лишены теорией относительности: каждый может сравнивать свое движение только с движением рядом идущих, и при этом ему будет казаться, что они от него убегают.

Мы видим, таким образом, что закон Хаббла обеспечивает неизменность космологического принципа во все времена, и это утверждает нас в мнении, что как закон, так и сам принцип действительно справедливы.

Другим примером интуитивного образа может служить взрыв бомбы; в этом случае, чем быстрее летит осколок, тем дальше он улетит. Спустя мгновение после самого взрыва мы видим, что осколки распределены в соответствии с законом Хаббла, т е. их скорости пропорциональны расстояниям до них. Здесь, однако, нарушается космологический принцип, поскольку если мы отойдем достаточно далеко от места взрыва, то никаких осколков не увидим. Этим образом подсказан самый знаменитый в современной космологии термин «большой взрыв». Согласно этим представлениям, около 20 млрд. лет тому назад все вещество Вселенной было собрано в одной точке, из которой началось стремительное расширение Вселенной до современных размеров».

Закон Хаббла практически сразу же был признан в науке. Значение открытия Хаббла высоко оценил Эйнштейн. В январе 1931 года он писал: «Новые наблюдения Хаббла и Хьюмасона относительно красного смещения... делают вероятным предположение, что общая структура Вселенной не стационарная».

Открытие Хаббла окончательно разрушило существовавшее со времен Аристотеля представление о статичной, незыблемой Вселенной. В настоящее время закон Хаббла используется для определения расстояний до далеких галактик и квазаров.

Типы галактик

Эллиптические (E) галактики имеют на фотографиях форму эллипсов без резких границ и четких деталей. Их яркость возрастает к центру. Это вращающиеся эллипсоиды, состоящие из старых звезд; их видимая форма зависит от ориентации к лучу зрения наблюдателя. При наблюдении с ребра отношение длин короткой и длинной осей эллипса достигает ~ 5/10 (обозначается E5).

Линзовидные (L или S0) галактики похожи на эллиптические, но, кроме сфероидального компонента, имеют тонкий быстро вращающийся экваториальный диск, иногда с кольцеобразными структурами наподобие колец Сатурна. Наблюдаемые с ребра линзовидные галактики выглядят более сжатыми, чем эллиптические: отношение их осей достигает 2/10.

Спиральные (S) галактики также состоят из двух компонентов – сфероидального и плоского, но с более или менее развитой спиральной структурой в диске. Вдоль последовательности подтипов Sa, Sb, Sc, Sd (от «ранних» спиралей к «поздним») спиральные рукава становятся толще, сложнее и менее закручены, а сфероид (центральная конденсация, или балдж) уменьшается. У спиральных галактик, наблюдаемых с ребра, спиральные рукава не видны, но тип галактики можно установить по относительной яркости балджа и диска.

Неправильные (I) галактики бывают двух основных видов: магелланового типа, т.е. типа Магеллановых Облаков, продолжающие последовательность спиралей от Sm до Im, и немагелланового типа I0, имеющие хаотические темные пылевые полосы поверх сфероидальной или дисковой структуры типа линзовидной или ранней спиральной.

Типы L и S распадаются на два семейства и два вида в зависимости от наличия или отсутствия проходящей через центр и пересекающей диск линейной структуры (бар), а также центральносимметричного кольца. Существуют и другие схемы классификации

галактик, основанные на более тонких морфологических деталях (по форме), но пока еще не развита объективная классификация, основанная на фотометрических, кинематических и радиоизмерениях.

Состав. Два структурных компонента – сфероид и диск – отражают различие в звездном населении галактик, открытое в 1944 немецким астрономом В.Бааде (1893–1960).

Население I, присутствующее в неправильных галактиках и в рукавах спиралей, содержит голубые гиганты и сверхгиганты спектральных классов O и B, красные сверхгиганты классов K и M, а также межзвездные газ и пыль с яркими областями ионизованного водорода. В нем присутствуют и мало массивные звезды главной последовательности, которые видны вблизи Солнца, но неразличимы в далеких галактиках.

Население II, присутствующее в эллиптических и линзовидных галактиках, а также в центральных областях спиралей и в шаровых скоплениях, содержит красные гиганты от класса G5 до K5, субгиганты и, вероятно, субкарлики; в нем встречаются планетарные туманности и наблюдаются вспышки новых

Первоначально считалось, что эллиптические галактики содержат только Население II, а неправильные – только Население I. Однако выяснилось, что обычно галактики содержат смесь двух звездных населений в разных пропорциях. Детальный анализ населений возможен только для нескольких близких галактик, но измерения цвета и спектра далеких систем показывают, что различие их звездных населений может быть значительнее, чем думал Бааде.

Внешний вид галактик чрезвычайно разнообразен, и некоторые из них очень живописны. Э. Хаббл избрал самый простой метод классификации галактик по внешнему виду, и нужно сказать, что хотя в последствии другими выдающимися исследователями были внесены разумные предположения по классификации, первоначальная система, выведенная Хабблом, по прежнему остается основой классификации галактик.

Почему галактики разные?

Еще со времен Хаббла астрономы пытались установить, под действием каких процессов галактики принимают ту или иную форму. В некоторых из ранних теорий предполагалось, что разные типы галактик представляют собой эволюционную последовательность.

Как только астрономы поняли процесс звездной эволюции и научились определять возраст звезд, (это стало возможно в 50-х годах), оказалось, что галактики всех типов имеют примерно одинаковый возраст. Почти в каждой галактике присутствует хотя бы несколько звезд с возрастом в несколько миллиардов лет. Отсюда следует, что ни эллиптические, ни неправильные галактики не могут быть старше остальных.

Однако эллиптические галактики состоят почти исключительно из старых звезд, в то время как галактики других хаббловских типов содержат относительно больше молодых звезд. Таким образом, хаббловская последовательность все же имеет некоторое отношение к возрастам. По-видимому, форма галактики связана со скоростью образования в ней новых молодых звезд уже после ее рождения, а следовательно, и с распределением звезд по возрастам. В эллиптических галактиках очень мало звезд возникло после стадии образования галактики и поэтому мы наблюдаем здесь ничтожное количество молодых звезд. В галактиках типа Sa звезды продолжают образовываться до сих пор, но скорость этого процесса невелика, в галактиках типа Sb темп звездообразования выше, галактики типа Sc очень активны, а наиболее бурно звездообразование протекает в галактиках типа Irr 1.

Эти результаты навели исследователей на мысль о том, что последовательность хаббловских типов упорядочивает галактики по степени сохранения ими газа и пыли: неправильные галактики сберегли большую часть своего газа и своей пыли для постепенного рождения все новых и новых звезд, в то время как эллиптические галактики израсходовали почти весь свой исходный газ на первую взрывную вспышку звездообразования. Согласно современным представлениям два важнейших фактора, определяющих форму галактики, это, во-первых, начальные условия (масса и момент вращения) и, во-вторых, окружение (т.е. членство в скоплении или наличие близких спутников). В этом отношении галактика похожа на человека: ее характер зависит как от наследственности, так и от общества, в котором она "вращалась".



 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-06-09 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: