Причины аварий строительных конструкций




Проектный срок службы строительных конструкций (время, по истечении которого дальнейшая эксплуатация становится невозможной, а восстановление – экономически нецелесообразным) зависит от класса сооружений и составляет для I класса – более 90 лет, II класса – более 60 лет, III класса – более 30 лет. Такой срок эксплуатации для промышленных и гражданских зданий обычно превосходит сроки морального износа.

В истории известны случаи, когда сроки нормальной эксплуатации строительных сооружений исчисляются столетиями: каменные конструкции Спасо-Евфросиньевской церкви в г. Полоцке (ХII в.), известково-бутовые, каменные конструкции Софийского собора в г. Полоцке (ХIII – ХVIII вв.), металлические конструкции каркасов Казанского и Исаакиевского соборов в г. Санкт-Петербурге (начало ХIХ в.), знаменитой Эйфелевой башни в Париже (1889 г.) и др.

На работоспособность и сроки службы конструкций большое влияние оказывают повреждения, возникающие в процессе эксплуатации, которые, накапливаясь и развиваясь, могут привести к отказам в работе как отдельных элементов, так и строительных сооружений в целом.

Среди аварий строительных конструкций на I месте стоят железобетонные и каменные, а затем металлические конструкции (рис. 1.1, а). Согласно статистическим данным около 60 % всех аварий происходит в период строительства и около 40 % – в период эксплуатации (рис. 1.1, б). Аварии строительных конструкций происходят и в настоящее время, случается повторяемость аварий, некоторые из них становятся даже «типовыми». Аварии – чаще всего результат действия совокупности причин, основные из них можно классифицировать следующим образом (табл. 1.1).

 

б
a

 

 


Рис. 1.1. Диаграммы распределения аварий строительных конструкций:
а – количество аварий и материальный ущерб от них; б – статистические данные
количества аварий во время строительства и эксплуатации

 

Таблица 1.1

Причина Количество, %
1. Дефекты монтажа, непроектное выполнение узлов сопряжения конструкций, нарушение технологии производства работ 2. Несоответствие качества строительных материалов и конструкций требованиям норм 3. Низкое качество эксплуатации, изменение проектных расчетных схем конструкций, превышение фактических нагрузок над проектными, взрывы и пожары 4. Ошибки проектов, недостатки норм проектирования, стандартов и технических условий          

 

Кроме повышения ответственности проектных и строительных организаций за качество работы, предусмотрены дополнительные меры по улучшению качества, надежности и предотвращения аварий строительных сооружений:

1. Осуществление технического надзора за строительством со стороны заказчика, авторского надзора проектной организации.

2. Обязательные сертификация и контроль качества строительных материалов и изделий, использование строительной организацией собственной испытательной лаборатории.

3. Организация службы технического надзора за эксплуатацией строительных сооружений, системы планово-предупредительных ремонтов, периодического осмотра и обследования технического состояния строительных сооружений, профилактики аварийных состояний.

4. Государственная вневедомственная экспертиза строительных проектов, совершенствование норм проектирования строительных сооружений.

1.2. Агрессивное воздействие сред
на материалы строительных конструкций

 

Как показывает практика, частичный или полный отказ строительных конструкций зданий и сооружений в ряде случаев происходит задолго до окончания проектного срока службы. Одна из основных причин – разрушение материала строительных конструкций в результате коррозии под воздействием внешней агрессивной среды.

Коррозия материалов строительных конструкций (бетонных и железобетонных, каменных, металлических и др.) зависит от многих факторов: вида, химического состава, концентрации, растворимости в воде, влажности, температуры окружающей среды и условий контакта с ней, а также от параметров самой конструкции (например, для железобетонной конструкции – от конструктивной формы поперечного сечения, вида и плотности бетона, вида, количества и расположения арматуры, типа и уровня напряженного состояния, наличия и ширины раскрытия трещин).

Агрессивные среды по степени воздействия на строительные конструкции (относительное снижение прочности материала в течение 1 года) разделяют на неагрессивные (снижения прочности нет), слабоагрессивные (снижение прочности менее 5 %), среднеагрессивные (снижение прочности 5…20 %) и сильноагрессивные (снижение прочности более 20 %).

По физическому состоянию агрессивные среды могут быть газовоздушные, жидкие и твердые.

Наиболее распространенные агрессивные газы: углекислый газ, кислород, водяной пар, сернистый и серный ангидрид, сероводород, аммиак, хлор, хлористый водород, двуокись хлора, фтористый водород, фосфорный ангидрид, пары брома, иода и т.д. Степень агрессивности газовоздушных сред зависит от растворимости в воде самих газов, температуры и влажности среды.

Газовоздушные среды по характеру взаимодействия с цементным камнем подразделяются на три группы.

1 группа – углекислый газ, фтористый водород, фтористый кремний, фосфорный ангидрид – проникают в поровое пространство бетона, образуют с Са(ОН)2 (гидроксид кальция) нерастворимые и малорастворимые соли кальция при незначительном увеличении в объеме. Основная схема агрессивного воздействия – нейтрализация щелочности цементного камня:

Са(ОН)2 + СО2 → СаСО3 + Н2О; СаСО3 – нерастворимое соединение.

2 группа – сернистый и серный ангидрид, сероводород – образуют в поровом пространстве малорастворимые соли, способные увеличиваться в объеме более чем в 2 раза и разрушать бетон. Визуально это проявляется в виде послойного шелушения.

3 группа – хлор, хлористый водород, двуокись хлора, пары брома, иода – образуют хорошо растворимые соли кальция, засасываемые в капилляры и транспортирующие ионы хлора к арматуре, практически не нарушая щелочность защитного слоя бетона.

Са(ОН)2 + 2НСl → СаСl2 + Н2О; СаСl2 легкорастворимый продукт.

Жидкие агрессивные среды: атмосферные осадки и грунтовые воды (мягкие, талые снеговые), минерализованные воды с содержанием солей Cl, Mg2+, SO42–, Са, Na, K, нефтепродукты и растворители, растительные и животные масла и др. Степень их агрессивного воздействия зависит от концентрации агрессивных веществ, температуры, скорости движения при соприкосновении с поверхностью конструкции, напора.

Из большого числа «механизмов» разрушения бетона выделяются три основных вида:

I вид – процессы растворения составных частей цементного камня и выноса продуктов гидрата окиси кальция Са(ОН)2протекающей водой (выщелачивание) – физический вид коррозии. Признаком коррозии бетона I вида является наличие высолов на поверхности, которые приводят к увеличению пористости цементного камня и снижению его прочности. При выщелачивании 10 % СаО происходит снижение прочности до 10 %, при потере 20 % СаО – до 25 % и при потере около 33 % СаО наступает полное разрушение цементного камня.

СаО + Н2О → Са(ОН)2

II вид – результат взаимодействия составных частей цементного камня с кислотами или солями, приводящий к образованию легкорастворимых или аморфных размываемых водой веществ(продукты растворимы).

Са(ОН)2 + Н2СО3 → СаСО3 + 2Н2О,затем

СаСО3 + Н2СО3 → Са(НСО3)2; Са(НСО3)2 легкорастворимый продукт.

Бетон разрушается послойно. При реконструкции поврежденный коррозией бетон удаляют.

III вид характеризуется накоплением в порах и капиллярах цементного камня малорастворимых солей с увеличением их объема. Давление приводит к разрушению цементного камня. На начальной стадии плотность и прочность бетона увеличивается. Если в этот период обеспечить антикоррозионную защиту, бетон может быть сохранен, в противном случае, в дальнейшем происходит его разупрочнение (разрыхление).

Са(ОН)2 + Na2SO4 + 2H2O → СаSO4·2Н2О + 2NaOH,

В реальных условиях коррозия каждого вида в отдельности встречается редко, как правило, они сочетаются. Степень коррозионного воздействия увеличивается с увеличением температуры среды. Опасно сочетание попеременного замораживания-оттаивания с процессами коррозии III вида.

Агрессивное воздействие нефтепродуктов на железобетонные конструкции объясняется содержанием в них высокомолекулярных смол и присадок. В наибольшей степени снижают прочность бетона и его сцепление с арматурой минеральные масла и мазуты.

Отработанные минеральные, окисленные растительные и животные масла не только агрессивны к бетону, но и вызывают коррозию арматуры и закладных деталей. Дизельное топливо и масляные эмульсии менее агрессивны. Бензины, керосины и растворители практически не влияют на прочность бетона.

Твердые агрессивные среды: минерализованные грунты, содержащие соли Cl, Mg2+, SO42–, Са, Na, K, и минеральные удобрения. Агрессивность твердых веществ определяется их растворимостью в воде и гигроскопичностью.

В основном строительные металлические конструкции подвергаются атмосферной коррозии (на открытом воздухе, внутри промышленных зданий и под навесами). Различают три вида коррозии: равномерную сплошную, неравномерную сплошную и местную.

Равномерная сплошная коррозия характерна для сплавов металлов, не имеющих защитных окисных пленок или имеющих рыхлые пленки.

Неравномерная сплошная коррозия имеет место в многофазных сплавах металлов и наличии дефектов на поверхности.

Местная коррозия наблюдается при местном нарушении защитных покрытий, может распространяться в глубину металла, вызывая его вспучивание, или повреждает один из материалов, составляющих сплав.

Скорость коррозии зависит от вида агрессивных воздействий и условий среды. Повышение температуры ускоряет процесс коррозии. При нагреве до температуры 200…250 °С на поверхности стальных элементов образуется тонкая пленка окислов, пассивирующая поверхностный слой стали, при температуре 500…600°С происходит коробление и растрескивание поверхностной защитной пленки, а при отрицательной температуре (ниже минус 30…минус 40 °С) коррозия стали практически прекращается.

В зависимости от механизма разрушения металла различают химическую и электрохимическую коррозию.

Химическая коррозия происходит под воздействием газов или жидкостей (не электролитов) органического происхождения. В результате их взаимодействия на поверхности металла образуется пленка в виде окислов.

Электрохимическая коррозия наблюдается во влажном воздухе и водных растворах, проводящих ток. Атомы металла в результате переходят в раствор электролита в виде ионов, а эквивалентное число электронов остается в металле.

На коррозионную стойкость стальных элементов влияет также и конструктивная форма сечения: круглое сечение – самое устойчивое, затем квадратное, коробчатое, одиночный уголок.

Продукт коррозии – ржавчина имеет значительно больший объем, чем исходный металл. В различного рода щелях опасно скопление продуктов коррозии, приводящих к расслоению элементов.

Древесина как строительный материал отличается повышенной сопротивляемостью к химическим воздействиям и имеет преимущество перед металлом. Однако все породы древесины весьма подвержены разрушительному действию огня, грибов, насекомых и грызунов.

Древоразрушающий гриб питается органическими веществами древесины и развивается при определенных условиях среды (температуре 5…25 °С, влажности 50…70 % и отсутствии вентиляции). Грибы быстро размножаются посредством спор и переносятся на здоровую древесину. Под воздействием грибов в древесине образуются поперечные и продольные трещины, она становится рыхлой и трухлявой. К наиболее распространенным видам грибов, поражающих древесину, относятся настоящий домовой гриб, белый домовой гриб, гриб домовой пленчатый, трутовик. Они поселяются в сухой древесине, их появление возможно спустя многие годы от момента окончания сушки. Мицелий этих грибов может пробивать себе дорогу даже через каменные стены и грунт. Древесина под действием грибов превращается в ватообразную коричневую рыхлую ткань с серыми (у настоящего домового гриба) и белыми жгутами (у белого домового гриба) и в виде пленки (у гриба домового пленчатого).

Насекомые (короеды, дровосеки), поражающие растущую и свежесрубленную древесину, не поражают и не размножаются в древесине строительных конструкций. Для строительных конструкций опасность представляют насекомые, питающиеся сухой древесиной: жучки-точильщики, долгоносики домовые, древесинники, термиты и др. В древесине они протачивают круглые или овальные отверстия и разрушают ее.

Вопросы для самоконтроля

 

1. Роль реконструкции в промышленном и гражданском строительстве.

2. Назовите основные причины аварий строительных конструкций и мероприятия по их предотвращению.

3. Назовите факторы, влияющие на коррозию материалов строительных конструкций.

4. Классифицируйте агрессивные среды по состоянию и степени воздействия на материалы строительных конструкций.

5. Расскажите о характере взаимодействия цементного камня с агрессивными газами I группы, II группы, III группы.

6. Опишите «механизм» разрушения бетона при коррозии I вида, II вида, III вида.

7. Каково агрессивное воздействие нефтепродуктов (минеральное масло, мазут, дизельное топливо, бензин и др.) на железобетонные конструкции?

8. Назовите виды коррозии стальных конструкций.

9. Расскажите о воздействиях, разрушающих древесину строительных конструкций.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-12-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: