II Встраивание гена в генетический элемент, способный к репликации (вектор).




КОНСТРУИРОВАНИЕ ПРОДУЦЕНТОВ С ПОМОЩЬЮ ГЕННОЙ ИНЖЕНЕРИИ. ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ РАСТЕНИЙ.

1. Сущность и задачи генной инженерии.

Для того, чтобы искусственным путем наделить какой-либо организм новыми наследственными свойствами, нужно ввести в него хотя бы один чужеродный ген, причем, необходимо приготовить (сконструировать) фрагмент чужеродной ДНК, содержащий этот нужный ген.

Генная инженерия, или техника рекомбинантных ДНК, - это совокупность приемов, позволяющих in vitro перенести генетический материал из одного организма (источника генов) в другой (реципиент) так, чтобы обеспечить наследование этих генов в новом для них организме.

Одной из главных задач генной инженерии является получение организмов с желаемыми свойствами. Одним из последних сверх достижений генной инженерии является создание искусственной клетки, о чем доложил 2010 году Крейг Вентер.

Методами генной инженерии возможно преодолевать межвидовые барьеры, то есть переносить гены и передавать отдельные наследственные признаки одних организмов другим (напр., от человека или животного - бактериям, растениям и др.). Получают генетически модифицированные микроорганизмы (трансгенные или рекомбинантные) обладающие сверхпродукцией для производства инсулина, соматотропина, интерферона и многих других белков.

2. Этапы получения генетически модифицированных микроорганизмов–продуцентов:

I выделение нужного (целевого) гена;

II встраивание гена в генетический элемент, способный к репликации (вектор);

III введение вектора в организм-реципиент;

VI идентификация (скрининг) и отбор клеток, которые приобрели желаемый ген или гены.

I Выделение нужного (целевого) гена. Выделение генов – один из главных этапов в генетической инженерии. Существует два основных способа получения гена: синтез и выделение из ДНК.

Синтез гена осуществляется 2-мя путями

А. Химико-ферментативный синтез генов (применяется наиболее часто).

Химическим путем синтезируют олигонуклеотиды или праймеры (короткие одноцепочечные фрагменты ДНК - 8-16 нуклеотидов), а гены синтезируют ферментативным методом с помощью ПЦР. Химический синтез генов возможен когда известен нуклеотидный состав (первичная структура) гена или первичная структура кодируемого геном полипептида.

Б. Синтез генов с помощью обратной транскрипции намРНК. Выделяют мРНК соответствующего гена из полирибосом и используют ее в качестве матрицы для фермента ревертазы. Метод основан на универсальной способности обратных транскриптаз синтезировать двунитевую ДНК на однонитевых РНК-матрицах.

Гены также могут быть получены из уже созданных геномных библиотек, которые представляют собой совокупность фрагментов геномной ДНК какого-либо организма или из библиотек кДНК.

2)Выделение гена из ДНКклетки с нужными свойствами. Необходимо точно знать расположение гена и вырезать его при помощи рестриктаз. Каждая из рестриктаз узнает свой сайт рестрикции и разрезает ДНК либо внутри сайта, либо в непосредственной близости от него. Рестриктазы (своеобразные молекулярные ножницы), действуя на двухцепочечную ДНК, "узнают" в ней определенную последовательность нуклеотидов. Причем, каждая рестриктаза узнает только свою последовательность ДНК, прикрепляется к ней и разрезает ее в месте прикрепления. Рестриктазам безразлично, какую ДНК разрезать – человека или растения, бактерии или вируса, лишь бы в ней были распознаваемые участки.

Это значит, что две совершенно несхожих между собой последовательности ДНК (допустим из клеток слона и лягушки) при обработке одной и той же рестриктазой легко можно сшить (слепить) друг с другом.

II Встраивание гена в генетический элемент, способный к репликации (вектор).

Выделенный или синтезированный ген не может самостоятельно встраиваться в ДНК клетки-мишени и тем более начинать функционировать. Для переноса целевого гена создают специальную конструкцию - вектор, несущий полученный ген и способный встраиваться в геном клетки. Генетический вектор – это молекула ДНК или РНК, которые способны переносить в клетку чужеродную ДНК, обеспечить еѐ амплификацию и интеграцию в геном.

1. Требования к генетическим векторам:

- вектор должен быть небольшим и содержать сайты рестрикции для нескольких рестриктаз, должен обладать определенной емкостью;

- вектор должен иметь точку начала репликации (ori), т.е. автономно реплицироваться, накапливаться в многочисленных копиях в клетке хозяина и сохраняться в дочерних клетках при делении материнской;

- иметь функциональный генпромотор (прокариотический или эукариотический), способный экспрессироваться в клетке;

- должен иметь маркерный ген, позволяющий различать гибридные клетки для эффективной селекции;

- должен быть способным передаваться в клетку соответствующего организма.

2. Характеристика векторов для переноса генетической информации в прокариотические клетки.

В качестве прокариотических векторов чаще используют плазмидыбактерий, бактериофаги.

Плазмидыбактерий способны реплицироваться независимо от хромосомы это их главное свойство. Плазмиды могут быть выделены из клетки и использованы в неповрежденном, нативном состоянии. В векторной плазмиде E.coli pBR322 есть маркерные гены устойчивости к ампициллину и к тетрациклину. Бактериальные клетки, содержащие такой вектор, устойчивы одновременно к ампициллину и тетрациклину. Плазмидные векторы удобны для клонирования небольших фрагментов (до 10 тыс. пар оснований) геномов, т.е. плазмидные векторы обладают небольшой емкостью.

Бактериофаги – вирусы бактерийспособны встраиваться в геном клетки хозяина (вызывать лизогенизацию).

Бактериофаги широко распространены в природе — их выделяют из воды, почвы, организмов различных животных и человека. Большинство фагов ДНК-содержащие вирусы, имеют смешанный тип симметрии капсида. Широко используют векторы на основе бактериофагов E.coli - λ и М13. Из ДНК фага удаляют области, не существенные для репликации в клетках E.coli, и оставляют сайты, предназначенные для встраивания фага в геном клетки хозяина (фаговый вектор должен проникнуть в клетку и встроиться в геном). В эту же область встраивают целевой и маркерные гены. На основе бактериофага λ можно сконструировать векторы емкостью до 25 т.п.н.

3. Характеристика векторов для переноса генетической информации в эукариотические клетки.

В качестве эукариотических векторов используют вирусы животных и растений, Ti плазмиды агробактерий (Agrobakterium tumefaciens), а также искусственно сконструированные векторы, способные реплицироваться как в бактериальных, так и в эукариотических клетках (челночные векторы).

 

 

Длина плазмиды 4361 п.н., она имеет 2 гена устойчиво-сти к антибиотикам: ампициллину (Ampr), тетрациклину (Tetr), а также сайты для рестриктаз: - BamHI (Bacillus amyloliquefaciens H) - HindIII (Haemophilus influenzae d) - SalImonella (Streptomyces albus) - PstI (Providencia stuartii) - EcoRI (E.Coli) (Escherichia coli).

4. Создание генетической конструкции.

Очищенную кольцевую плазмиду E.coli pBR322 обрабатывают ферментом рестриктазой Bam H1, которая специфически разрезает плазмиду в единственном сайте, расположенном в гене устойчивости к тетрациклину, так что образуется линейная молекула с липкими концами. Такие молекулы смешивают с подготовленным участком ДНК (с нужным геном), содержащим комплементарные липкие концы.

Поскольку липкие концы этих двух ДНК взаимно комплементарны, они спариваются с образованием гибридных молекул. Далее смесь обрабатывают ДНК-лигазой для сшивания комплементарных концов нужного гена и вектора.

При включении фрагментов ДНК в участок гена резистентности к тетрациклину, устойчивость к тетрациклину из-за этой вставки нарушается, и все рекомбинантные плазмидысохраняют устойчивость только к ампициллину. Таким образом, высевая клетки на среды с антибиотиками, можно отобрать клоны, содержащие рекомбинантные молекулы ДНК.

Гибридные векторы, содержащие ДНК фага и плазмиды- космиды и фазмиды.

Космиды – плазмидные векторы, в которые встроен участок генома фага λ, обеспечивающий возможность упаковки этой молекулы ДНК в фаговую частицу. Фаговые частицы обеспечивают хорошее проникновение гибридной ДНК в клетку (путем инъекции), после чего происходит замыкание ДНК в кольцо по липким концам и репликация ее по плазмидному типу.

Фазмиды также являются гибридами между фагом и плазмидой. После встройки чужеродной ДНК могут в одних условиях развиваться как фаги, в других – как плазмиды.

Векторы на основе РНК-содержащих вирусов или ретровирусов (Retroviridae). Они легко интегрируют в геном клетки-хозяина, тем самым обеспечивая долговременную экспрессию необходимого гена. Попадая внутрь клетки, ретровирусная РНК превращается в ДНК путем хорошо теперь известного процесса обратной транскрипции. Эта ДНК встраивается в геномную ДНК и с этого момента становится неотъемлемой частью генома клетки (является провирусом). Инфицирование организма ретровирусами – это своего рода естественно-природный механизм генетической модификации клетки. Наиболее часто в качестве вектора применяют вирус лейкемии мышей.

Векторы на основе ДНК-геномных вирусов. Векторы, созданные на основе ДНК-вирусов обладают большими размерами по сравнению с РНК-геномными вирусами и поэтому могут вмещать фрагменты ДНК (трансгены) длиной до 35 000 пар оснований. С точки зрения переноса чужеродного ДНК в организм реципиента удобными оказались так называемые "челночные векторы", способные реплицироваться как в клетках животных, так и в клетках бактерий. Их получают, сшивая друг с другом большие сегменты вирусов животных и бактерий (например, SV40 и pBR322) так, чтобы области, ответственные за репликацию ДНК, остались незатронутыми. Это позволяет проводить основные операции по конструированию вектора в бактериальной клетке, а затем полученную рекомбинантную ДНК использовать для клонирования генов в животной клетке.

 

Схема рестриктазно-лигазного метода



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: