Исходные данные задачи №1.5




Задание 1. Составьте математические модели для следующих задач.

Вариант 1

Фирма выпускает три вида изделий. В процессе производства используются три технологические операции. На рис.1.1 показана технологическая схема производства изделий

Рис.1.1. Технологическая схема производства

 

Фонд рабочего времени ограничен следующими предельными значениями: для первой операции – 430 мин; для второй операции – 460 мин; для третьей операции – 420 мин. Изучение рынка сбыта показало, что ожидаемая прибыль от продажи одного изделия видов 1, 2 и 3 составляет 3, 2 и 5 рублей соответственно.

Постройте математическую модель, позволяющую найти наиболее выгодный суточный объем производства каждого вида продукции?

Вариант 2

При изготовлении изделий и используются сталь и цветные металлы, а также токарные и фрезерные станки. По технологическим нормам на производство единицы изделия требуется 300 и 200 станко-часов соответственно токарного и фрезерного оборудования, а также 10 и 20 кг соответственно стали и цветных металлов. Для производства единицы изделия требуется 400, 100, 70 и 50 соответствующих единиц тех же ресурсов.

Цех располагает 12400 и 6800 станко-часами соответственно токарного и фрезерного оборудования и 640 и 840 кг соответственно стали и цветных металлов. Прибыль от реализации единицы изделия составляет 6 руб. и от единицы изделия – 16 руб.

Постройте математическую модель задачи, используя в качестве показателя эффективности прибыль и учитывая, что время работы фрезерных станков должно быть использовано полностью.

Вариант 3

Для сохранения нормальной жизнедеятельности человек должен в сутки потреблять белков не менее 120 условных единиц (усл. ед.), жиров – не менее 70 и витаминов – не менее 10 усл. ед. Содержание их в каждой единице продуктов и равно соответственно (0,2; 0,075; 0) и (0,1; 0,1; 0,1) усл. ед. Стоимость 1 ед. продукта – 2 руб., –3 руб.

Постройте математическую модель задачи, позволяющую так организовать питание, чтобы его стоимость была минимальной, а организм получил необходимое количество питательных веществ.

Вариант 4

В районе лесного массива имеются лесопильный завод и фанерная фабрика. Чтобы получить 2,5 коммерчески реализуемых комплектов пиломатериалов, необходимо израсходовать 2,5 еловых и 7,5 пихтовых лесоматериалов. Для приготовления листов фанеры по 100 требуется 5 еловых и 10 пихтовых лесоматериалов. Лесной массив содержит 80 еловых и 180 пихтовых лесоматериалов.

Согласно условиям поставок, в течение планируемого периода необходимо произвести по крайней мере 10 пиломатериалов и 1200 фанеры. Доход с 1 пиломатериалов составляет 160 руб., а со 100 фанеры – 600 руб.

Постройте математическую модель для нахождения плана производства, максимизирующего доход.

Примечание. При построении модели следует учесть тот факт, что пиломатериалы могут быть реализованы только в виде неделимого комплекта размером 2,5 , а фанера – в виде неделимых листов по 100 .

Вариант 5

С вокзала можно отправлять ежедневно курьерские и скорые поезда. Вместимость вагонов и наличный парк вагонов на станции указаны в табл.1.4.

Таблица 1.4

Исходные данные задачи №1.5

Характеристики парка вагонов Тип вагона
Багажный Почтовый Плацкартный Купейный Мягкий
Число вагонов в поезде, шт.:          
курьерском        
скором          
Вместимость вагонов, чел.      
Наличный парк вагонов, шт.          

 

Постройте математическую модель задачи, на основании которой можно найти такое соотношение между числом курьерских и скорых поездов, чтобы число ежедневно отправляемых пассажиров достигло максимума.

Вариант 6

Управление городским автобусным парком решило провести исследование возможности более рациональной организации своей работы с целью снижения интенсивности внутригородского движения. Сбор и обработка необходимой информации позволили сделать вывод, что необходимое минимальное количество автобусов существенно меняется в течение суток (рис.1.2). Длительность непрерывного использования автобусов на линии равна 8 ч в сутки (с учетом необходимых затрат времени на текущий ремонт и обслуживание). График перекрывающихся смен представлен на рис.1.3.

Рис.1.2. Минимально необходимое количество автобусов на линии

Рис.1.3. График перекрывающихся смен

Постройте математическую модель, позволяющую узнать, какое количество автобусов необходимо выпускать на линию в каждой из смен при условии, что общее количество автобусов, выходящих на линию в течение суток, должно быть минимальным.

Вариант 7

Служба снабжения завода получила от поставщиков 500 стальных прутков длиной 5 м. Их необходимо разрезать на детали А и B длиной соответственно 2 и 1,5 м, из которых затем составляются комплекты. В каждый комплект входят 3 детали А и 2 детали B. Характеристики возможных вариантов раскроя прутков представлены в табл.1.5.

Таблица 1.5

Характеристики возможных вариантов раскроя прутков

Вариант раскроя Количество деталей, шт./пруток Отходы, м/пруток
А B
1      
2      
3     0,5
Комплектность, шт./компл.      

 

Постройте математическую модель задачи, позволяющую найти план раскроя прутков, максимизирующий количество комплектов.

Примечание. В ЦФ могут входить не все переменные задачи.

Вариант 8

Малое предприятие выпускает детали А и В. Для этого оно использует литье, подвергаемое токарной обработке, сверлению и шлифованию. Производительность станочного парка предприятия по обработке деталей А и В приведена в табл.1.6.

Предполагая, что спрос на любую комбинацию деталей А и В обеспечен, постройте математическую модель для нахождения плана их выпуска, максимизирующего прибыль.

Таблица 1.6



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: