Обзор архитектуры и возможностей системы Linux.




РАБОТА С ОПЕРАЦИОННЫМИ СИСТЕМАМИ. СОВРЕМЕННЫЕ ОПЕРАЦИОННЫЕ СИСТЕМЫ

Обзор архитектуры и возможностей системы Linux.

Система Linux – популярная ОС, созданная в начале 1990-х гг. с целью разработки UNIX -совместимой ОС с открытым исходным кодом. Создатель Linux – Линус Торвальдс. Основная часть Linux полностью оригинальна и не содержит ведомственного конфиденциального кода.

Linux использует разработки BSD UNIX, AT&T UNIX, библиотеку X Windows. Разработка Linux поддерживается сетью разработчиков, связанных через Интернет.

Дистрибутивы Linux имеют стандартный формат (RPM), что обеспечивает совместимость между многочисленными диалектами Linux.

Ядро Linux распространяется на условиях GNU General Public License, суть которых в том, что разработки на основе кода Linux нельзя использовать для коммерческих целей, и распространение ПО, разработанного на основе Linux, должно включать исходные коды.

Linux в основном используется как серверная ОС. Доля ее использования как клиентской ОС очень мала.

Linux – свободно распространяемая полнофункциональная ОС с полным набором UNIX -совместимых инструментов. Обеспечивается совместимость с POSIX. Linux API соответствует UNIX SVR4, но не UNIX BSD.

Linux состоит из ядра, системных библиотек и системных утилит. Код ядра исполняется в привилегированном режиме. Системные библиотеки и утилиты исполняются в пользовательском режиме.

Важное новшество в Linux – механизм динамически загружаемых модулей ядра, который дает возможность отдельно компилировать, загружать, запускать и выгружать модули ядра. Компоненты модуля ядра – управление загрузкой модуля, регистрация драйверов и разрешение конфликтов.

Для управления процессами в Linux для каждого процесса создаются и используются его идентификация, окружение и контекст.

Для поддержки многопоточности в Linux используется системный вызов clone, который создает новый процесс в адресном пространстве процесса -родителя.

В отличие от многих ОС, планирование в Linux включает также и планирование задач ядра. Синхронизация в ядре требует, чтобы критическая секция одной части ядра не прерывалась другими критическими секциями.

При обработке прерываний все прерывания разделены на верхнюю половину (обычная обработка прерываний, с отключением рекурсивных прерываний) и нижнюю половину, исполняемую при включенном режиме прерываний с использованием мини- планировщика.

При планировании процессов в Linux учитываются кредиты и приоритеты. Используются классы планирования FIFO и round-robin.

Linux поддерживает симметричное мультипроцессирование (SMP).

 

Система распределения физической памяти в Linux использует механизм партнерской кучи, основанный на расщеплении свободных блоков и на объединении соседних свободных блоков памяти.

Виртуальная память в Linux основана на таблице страниц каждого процесса и логической точке зрения на память как совокупность непересекающихся смежных областей.

При создании нового процесса его адресное пространство пусто и наполняется регионами виртуальной памяти по мере загрузки программ. Системный вызов fork полностью копирует в дочерний процесс адресное пространство процесса -родителя.

Для управления страницами используется механизм откачки и подкачки.

Ядро Linux резервирует один регион виртуальной памяти каждого процесса для его собственных нужд, в частности, для размещения статической памяти.

Linux поддерживает как a.out-, так и ELF -форматы файлов исполняемого кода; статическую и динамическую линковку.

В Linux реализована виртуальная файловая система (VFS), скрывающая различие между разными системами файлов. Основная файловая система Linux – Ext2fs, основанная на использовании блоков небольшого размера, битовой карты блоков и многоуровневой косвенной адресации. Другая файловая система – Linux proc – не хранит данные явно, а генерирует их при выполнении запросов на ввод-вывод.

Система ввода-вывода Linux использует кэш страниц и буферный кэш. Устройства разбиты на три класса – блочные, символьные и сетевые. Для блочных устройств используется блочный буферный кэш. Для символьных устройств поддерживаются специфические операции ввода-вывода и не поддерживается произвольный доступ к блокам данных. Особым образом организованы драйверы терминальных устройств (TTY), для которых ядро поддерживает стандартный интерфейс.

Как и в UNIX, в Linux сигнализация о событиях для пользовательских процессов реализуется с помощью сигналов. Процессы ядра не используют сигналы и взаимодействуют с помощью системных структур планировщика.

Для взаимодействия процессов используются конвейер (pipe) и разделяемые объекты в общей памяти.

Сетевая система Linux поддерживает как сетевые протоколы связи UNIXUNIX, так и протоколы ОС, отличных от UNIX. Реализация сетевой системы Linux имеет три уровня абстракции: сокетный интерфейс, драйверы протоколов и драйверы сетевых устройств. Поддерживается набор протоколов Интернета. Обеспечивается маршрутизация пакетов на любом участке сети. На верхнем уровне протокола маршрутизации поддерживаются протоколы UDP, TCP, ICMP.

Безопасность в Linux реализована на основе динамически подключаемых аутентификационных модулей. Управление доступом, как и в UNIX, осуществляется с помощью уникальных идентификаторов пользователя и группы и масок защиты. Реализована совместимость с POSIX – возможность многократно освобождать и получать uid процесса. Кроме того, реализована возможность выборочно передавать доступ к файлу любому серверному процессу.

Направления развития и использования Linux: новые ОС на основе ядра Linux (например, ОС для мобильных устройств Google Android) и обучение на основе Linux (российская ОС для школьников Альт Линукс).

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: