5.5.1. При эксплуатации аккумуляторных установок должны быть обеспечены их длительная надежная работа и необходимый уровень напряжения на шинах постоянного тока в нормальных и аварийных режимах.
5.5.3. Аккумуляторные батареи должны эксплуатироваться в режиме постоянного подзаряда. Для батарей типа СК напряжение подзаряда должно составлять 2,2±0,05 В на элемент, для батарей типа СН 2,18±0,04 В на элемент.
Подзарядная установка должна обеспечивать стабилизацию напряжения на шинах батареи с отклонениями, не превышающими 2% номинального напряжения.
Дополнительные элементы батареи, постоянно не используемые в работе, должны эксплуатироваться в режиме постоянного подзаряда.
5.5.5. На тепловых электростанциях 1 раз в 1 - 2 года должен выполняться контрольный разряд батареи для определения ее фактической емкости (в пределах номинальной емкости).
На подстанциях и гидроэлектростанциях не менее 1 раза в год должна проверяться работоспособность батареи по падению напряжения при толчковых токах, а контрольные разряды производиться по мере необходимости. В тех случаях, когда число элементов недостаточно, чтобы обеспечить напряжение на шинах в конце разряда в заданных пределах, допускается понижать на 50 - 70% номинальную емкость или осуществлять разряд части основных элементов.
Значение тока разряда каждый раз должно быть одно и то же. Результаты измерений при контрольных разрядах должны сравниваться с результатами измерений предыдущих разрядов. Заряжать и разряжать батарею допускается током, значение которого не выше максимального для данной батареи.
Температура электролита в конце заряда должна быть не выше 40°С для батарей типа СК. Для батарей типа СН температура должна быть не выше 35°С при максимальном зарядном токе.
|
5.5.6. Приточно-вытяжная вентиляция помещения аккумуляторной батареи на электростанциях должна быть включена перед началом заряда батареи и отключена после полного удаления газов, но не раньше чем через 1,5 ч после окончания заряда.
Порядок эксплуатации системы вентиляции в помещениях аккумуляторных батарей на подстанциях с учетом конкретных условий должен быть определен местной инструкцией.
При режиме постоянного подзаряда и уравнительного заряда напряжением до 2,3 В на элемент помещение аккумуляторной батареи должно вентилироваться в соответствии с местной инструкцией.
5.5.7. После аварийного разряда батареи на электростанции последующий ее заряд до емкости, равной 90% номинальной, должен быть осуществлен не более чем за 8 ч. При этом напряжение на аккумуляторах может достигать 2,5 - 2,7 В на элемент.
5.5.9. Напряжение на шинах постоянного тока, питающих цепи управления, устройства релейной защиты, сигнализации, автоматики и телемеханики, в нормальных эксплуатационных условиях допускается поддерживать на 5% выше номинального напряжения электроприемников.
Все сборки и кольцевые магистрали постоянного тока должны быть обеспечены резервным питанием.
5.5.10. Сопротивление изоляции аккумуляторной батареи в зависимости от номинального напряжения должно быть следующим:
Напряжение аккумуляторной батареи, В | |||||
Сопротивление изоляции, кОм, не менее |
Устройство для контроля изоляции на шинах постоянного оперативного тока должно действовать на сигнал при понижении сопротивления изоляции полюсов до уровня 20 кОм в сети 220 В, 10 кОм в сети 110 В, 6 кОм в сети 60 В, 5 кОм в сети 48 В, 3 кОм в сети 24 В.
|
В условиях эксплуатации сопротивление изоляции сети постоянного тока должно быть не ниже двукратного значения указанной уставки устройства для контроля изоляции.
5.5.11. При срабатывании устройства сигнализации в случае понижения уровня изоляции относительно земли в цепи оперативного тока должны быть немедленно приняты меры к устранению неисправностей. При этом производство работ без снятия напряжения в этой сети, за исключением поисков места повреждения изоляции, не допускается.
Для энергообъектов, на которых применяются микроэлектронные или микропроцессорные устройства РЗА, использовать метод определения мест понижения сопротивления изоляции путем поочередного отключения присоединений на щите постоянного тока не рекомендуется.
5.5.15. Осмотр аккумуляторных батарей должен производиться по графику, утвержденному техническим руководителем энергообъекта.
Измерения напряжения, плотности и температуры электролита каждого элемента должны выполняться не реже 1 раза в месяц.
5.5.16. Обслуживание аккумуляторных установок на электростанциях и подстанциях должно быть возложено на аккумуляторщика или специально обученного электромонтера (с совмещением профессии). На каждой аккумуляторной установке должен быть журнал для записи данных осмотров и объемов проведенных работ.
5.5.17. Персонал, обслуживающий аккумуляторную установку, должен быть обеспечен: приборами для контроля напряжения отдельных элементов батареи, плотности и температуры электролита; специальной одеждой и специальным инвентарем согласно типовой инструкции
|
Кабельные линии
4.2.1. Для каждой кабельной линии при вводе в эксплуатацию должны быть установлены наибольшие допустимые токовые нагрузки. Нагрузки должны быть определены по участку трассы с наихудшими тепловыми условиями, если длина участка не менее 10 м. Повышение этих нагрузок допускается на основе тепловых испытаний при условии, что нагрев жил не будет превышать допустимый государственными стандартами и техническими условиями. При этом нагрев кабелей должен проверяться на участках трасс с наихудшими условиями охлаждения.
4.2.2. На период послеаварийного режима допускается перегрузка по току для кабелей с пропитанной бумажной изоляцией на напряжение до 10 кВ включительно - на 30%, для кабелей с изоляцией из полиэтилена и поливинилхлоридного пластиката - на 15%, для кабелей из резины и вулканизированного полиэтилена - на 18% длительно допустимой нагрузки продолжительностью не более 6 ч в сутки в течение 5 суток, но не более 100 ч в год, если нагрузка в остальные периоды не превышает длительно допустимой. Для кабелей, находящихся в эксплуатации более 15 лет, перегрузка по току не должна превышать 10%.
Перегрузка кабелей с пропитанной бумажной изоляцией на напряжение 20 и 35 кВ не допускается.
4.2.3. При сдаче в эксплуатацию кабельных линий на напряжение свыше 1000 В должна быть оформлена и передана организации, эксплуатирующему электрические сети, документация, предусмотренная строительными нормами и правилами и отраслевыми правилами приемки, а также:
исполнительный чертеж трассы с указанием мест установки соединительных муфт, выполненный в масштабах 1:200 и 1:500 в зависимости от развития коммуникаций в данном районе трассы;
скорректированный проект кабельной линии на напряжение 110 кВ и выше, согласованный перед прокладкой с организацией, эксплуатирующей линии, а в случае изменения марки кабеля с заводом-изготовителем и эксплуатирующей организацией;
чертеж профиля кабельной линии в местах пересечения с дорогами и другими коммуникациями для кабельных линий на напряжение 35 кВ и для особо сложных трасс кабельных линий на напряжение 6 - 10 кВ;
акты состояния кабелей на барабанах и в случае необходимости протоколы разборки и осмотра образцов (для импортных кабелей разборка обязательна);
кабельный журнал;
инвентарная опись всех элементов кабельной линии;
акты строительных и скрытых работ с указанием пересечений и сближений кабелей со всеми подземными коммуникациями;
акты на монтаж кабельных муфт;
акты приемки траншей, блоков, труб, каналов под монтаж;
акты на монтаж устройств по защите кабельных линий от электрохимической коррозии, а также результаты коррозионных испытаний в соответствии с проектом;
протокол испытания изоляции кабельной линии повышенным напряжением после прокладки;
результаты измерения сопротивления изоляции;
акты осмотра кабелей, проложенных в траншеях и каналах перед закрытием;
протокол прогрева кабелей на барабанах перед прокладкой при низких температурах;
акт проверки и испытания автоматических стационарных установок систем пожаротушения и пожарной сигнализации.
Кроме перечисленной документации при приемке в эксплуатацию кабельной линии напряжением 110 кВ и выше монтажной организацией должны быть дополнительно переданы энергообъекту:
исполнительные высотные отметки кабеля и подпитывающей аппаратуры (для линий 110 - 220 кВ низкого давления);
результаты испытаний масла во всех элементах линий;
результаты пропиточных испытаний;
результаты опробования и испытаний подпитывающих агрегатов на линиях высокого давления;
результаты проверки систем сигнализации давления;
акты об усилиях тяжения при прокладке;
акты об испытаниях защитных покровов повышенным напряжением после прокладки;
протоколы заводских испытаний кабелей, муфт и подпитывающей аппаратуры;
результаты испытаний устройств автоматического подогрева муфт;
результаты измерения тока по токопроводящим жилам и оболочкам (экранам) каждой фазы;
результаты измерения рабочей емкости жил кабелей;
результаты измерения активного сопротивления изоляции;
результаты измерения сопротивления заземления колодцев и концевых муфт.
При сдаче в эксплуатацию кабельных линий на напряжение до 1000 В должны быть оформлены и переданы организации: кабельный журнал, скорректированный проект линий, акты, протоколы испытаний и измерений.
4.2.4. Прокладка и монтаж кабельных линий всех напряжений, сооружаемых организациями других ведомств и передаваемых в эксплуатацию, должны быть выполнены под техническим надзором эксплуатирующей организации.
4.2.5. Каждая кабельная линия должна иметь паспорт с указанием основных данных по линии, а также архивную папку с документацией по п. 5.8.7 настоящих Правил.
Для предприятий, имеющих автоматизированную систему учета, паспортные данные могут быть введены в память ЭВМ.
Открыто проложенные кабели, а также все кабельные муфты должны быть снабжены бирками с обозначениями; на бирках кабелей в конце и начале линии должны быть указаны марки, напряжения, сечения, номера или наименования линии; на бирках соединительных муфт - номер муфты, дата монтажа.
Бирки должны быть стойкими к воздействию окружающей среды.
Бирки должны быть расположены по длине линии через 50 м на открыто проложенных кабелях, а также на поворотах трассы и в местах прохода кабелей через огнестойкие перегородки и перекрытия (с обеих сторон).
4.2.6 Раскопки кабельных трасс или земляные работы вблизи них должны производиться с разрешения эксплуатирующей организации.
Перед началом раскопок должно быть произведено контрольное вскрытие кабельной трассы под надзором персонала эксплуатирующей организации.
4.2.7. Раскопка кабельных линий специальными землеройными машинами, а также рыхление грунта над кабелем с применением отбойных молотков, ломов и кирок производится не более чем на глубину залегания защитного покрытия или сигнальной ленты или на глубину, при которой до кабеля остается слой грунта не менее 25 см. Остальной слой грунта должен удаляться вручную лопатами.
При проведении работ, не связанных с раскопкой, прокладкой или ремонтом кабелей, применение землеройной техники на расстоянии менее 1 м, а ударных и вибропогружных механизмов менее 5 м от кабельной трассы не допускается.
Для производства взрывных работ должны быть выданы дополнительные технические условия.
4.2.8. Кабельные линии должны периодически подвергаться профилактическим испытаниям повышенным напряжением постоянного тока в соответствии с объемом и нормами испытаний электрооборудования.
Необходимость внеочередных испытаний на кабельных линиях после ремонтных работ или раскопок, связанных с вскрытием трасс, определяется руководством энергообъекта, района, организации, эксплуатирующей электрические сети
Пуск Электродвигатели
4.1.1. При эксплуатации электродвигателей, их пускорегулирующих устройств и защит должна быть обеспечена их надежная работа при пуске и в рабочих режимах.
4.1.2. На шинах собственных нужд электростанции напряжение должно поддерживаться в пределах 100 - 105% номинального. При необходимости допускается работа электродвигателей при напряжении 90 - 110% номинального с сохранением их номинальной мощности.
При изменении частоты питающей сети в пределах ±2,5% номинального значения допускается работа электродвигателей с номинальной мощностью.
Номинальная мощность электродвигателей должна сохраняться при одновременном отклонении напряжения до ±10% и частоты до ±2,5% номинальных значений при условии, что при работе с повышенным напряжением и пониженной частотой или с пониженным напряжением и повышенной частотой сумма абсолютных значений отклонений напряжения и частоты не превышает 10%.
4.1.3. На электродвигатели и приводимые ими механизмы должны быть нанесены стрелки, указывающие направление вращения. На электродвигателях, их пусковых устройствах и шкафах регулируемого электропривода должны быть надписи с наименованием агрегата, к которому они относятся.
4.1.5. Электродвигатели с водяным охлаждением обмотки ротора и активной стали статора, а также со встроенными водяными воздухоохладителями должны быть оборудованы устройствами, сигнализирующими о появлении воды в корпусе. Эксплуатация оборудования и аппаратуры систем водяного охлаждения, качество конденсата и воды должны соответствовать положениям заводских инструкций.
4.1.6. На электродвигателях, имеющих принудительную смазку подшипников, должна быть установлена защита, действующая на сигнал и отключение электродвигателя при повышении температуры вкладышей подшипников или прекращении поступления смазки.
4.1.7. При перерыве в электропитании электродвигателей (включая электродвигатели с регулируемой частотой вращения) ответственного тепломеханического оборудования должен быть обеспечен их групповой самозапуск при повторной подаче напряжения от рабочего или резервного источника питания с сохранением устойчивости технологического режима основного оборудования.
Время перерыва питания, определяемое выдержками времени технологических и резервных электрических защит, должно быть не более 2,5 с.
Перечень ответственных механизмов должен быть утвержден техническим руководителем электростанции.
4.1.8. Электродвигатели с короткозамкнутыми роторами разрешается пускать из холодного состояния 2 раза подряд, из горячего - 1 раз, если заводской инструкцией не допускается большего количества пусков. Последующие пуски разрешаются после охлаждения электродвигателя в течение времени, определяемого заводской инструкцией для данного типа электродвигателя.
Повторные включения электродвигателей в случае отключения их основными защитами разрешаются после обследования и проведения контрольных измерений сопротивления изоляции.
Для двигателей ответственных механизмов, не имеющих резерва, повторное включение разрешается после внешнего осмотра двигателя.
Повторное включение двигателей в случаях действия резервных защит до выяснения причины отключения не допускается.
Особенности пуска и других режимов работы двухскоростных электродвигателей и двигателей с регулируемой частотой вращения должны указываться в местных инструкциях, составленных с учетом типовой и заводских инструкций по эксплуатации электродвигателей и регулируемых электроприводов.
4.1.9. Электродвигатели, длительно находящиеся в резерве, и автоматические устройства включения резерва должны осматриваться и опробоваться вместе с механизмами по утвержденному техническим руководителем графику. При этом у электродвигателей наружной установки, не имеющих обогрева, должны проверяться сопротивление изоляции обмотки статора и коэффициент абсорбции.
4.1.10. Вертикальная и поперечная составляющие вибрации (среднее квадратическое значение виброскорости или удвоенная амплитуда колебаний), измеренные на подшипниках электродвигателей, сочлененных с механизмами, не должны превышать значений, указанных в заводских инструкциях.
При отсутствии таких указаний в технической документации вибрация подшипников электродвигателей, сочлененных с механизмами, не должна быть выше следующих значений:
Синхронная частота вращения, об/мин | 750 и менее | |||
Удвоенная амплитуда колебаний подшипников, мкм |
Для электродвигателей, сочлененных с углеразмольными механизмами, дымососами и другими механизмами, вращающиеся части которых подвержены быстрому износу, а также для электродвигателей, сроки эксплуатации которых превышают 15 лет, допускается работа агрегатов с повышенной вибрацией подшипников электродвигателей в течение времени, необходимого для устранения причины повышения вибрации.
Нормы вибрации для этих условий не должны быть выше следующих значений:
Синхронная частота вращения, об/мин | 750 и менее | |||
Удвоенная амплитуда колебаний подшипников, мкм |
Периодичность измерений вибрации ответственных механизмов должна быть установлена по графику, утвержденному техническим руководителем электростанции.
4.1.12. Электродвигатели должны быть немедленно отключены от сети при несчастных случаях с людьми, появлении дыма или огня из корпуса электродвигателя, его пусковых и возбудительных устройств, шкафов регулируемого электропривода, поломке приводимого механизма.
Электродвигатель должен быть остановлен после пуска резервного (если он имеется) в случаях:
появления запаха горелой изоляции;
резкого увеличения вибрации электродвигателя или механизма;
недопустимого возрастания температуры подшипников;
перегрузки выше допустимых значений;
угрозы повреждения электродвигателей (заливание водой, запаривание, ненормальный шум и др.).
4.1.14. Профилактические испытания и ремонт электродвигателей, их съем и установку при ремонте, ремонт воздухоохладителей, встроенных в статор, узлов водоподвода к обмотке и другим охлаждаемым дистиллятом частям машины (после входных фланцевых соединений), щеточно-контактных аппаратов и пускорегулирующих устройств должен производить персонал электроцеха, за исключением электродвигателей задвижек, обслуживаемых цехом тепловой автоматики и измерений.
4.1.16. Профилактические испытания и измерения на электродвигателях должны быть организованы в соответствии с действующими объемом и нормами испытаний электрооборудования.
Шунтирующие реакторы
Шунтирующий реактор (ШР) - это устройство, обладающее большой индуктивностью и малым активным сопротивлением. Реактор потребляет реактивную мощность, тем самым снижает напряжение в сети. Шунтирующий реактор применяют для повышения пропускной способности линий сверхвысокого напряжения разгружая их по реактивной мощности, а так же для регулирования реактивной мощности и напряжения. Шунтирующие реакторы рассчитаны на высокие и сверхвысокие напряжения и могут присоединяться как к линии, так и подключаться к шинам подстанции.Шунтирующие реакторы (ШР) используются в качестве одного из средств компенсации реактивной мощности в сооружаемых, реконструируемых и эксплуатируемых электрических сетях напряжением 110—1150 кВ, образуемых соответствующими линиями электропередачи. Возможности ЛЭП разного класса напряжений характеризуются данными, приведенными в табл. 1 для наиболее распространенных сечений проводов. Наибольшие длины линий для напряжений 220 кВ и выше указаны с учетом сооружения промежуточных переключательных пунктов или подстанций с установкой на них КУ.
Таблица 1
Предполагается следующее использование линий по классам напряжений:
110—150 кВ для распределения мощностей внутри энергосистем и предприятий электрических сетей, электроснабжения промышленных предприятий, больших городов, удаленных или энергоемких сельских потребителей, распределения мощностей внутри крупных городов, электрификации железных дорог и трубопроводов;
220—330 кВ доя распределения мощностей внутри крупных энергосистем, электроснабжения удаленных и крупных потребителей, создания центров питания сетей 110—150 кВ, выдачи мощности небольших электростанций;
400—500 кВ для развития объединенных энергосистем и ЕЭС России, обеспечения межсистемных связей, выдачи мощности крупными электростанциями, электроснабжения крупных энергоемких предприятий или промышленных узлов;
750—1 150 кВ для развития крупных объединенных энергосистем и образования ЕЭС России, обеспечения межсистемных связей, выдачи мощности крупными электростанциями.
Известно, что высоковольтную ЛЭП можно рассматривать как цепь с распределенными параметрами, представленную в виде множества соединенных в цепочку элементов (рис. 2,а). Первичные параметры такой цепи, отнесенные к единице длины линии, имеют следующий физический смысл: г — сопротивление прямого и обратного проводов, L — индуктивность петли, образуемой прямым и обратным проводами (или с учетом влияния земли — рабочая индуктивность петли), g — проводимость (утечка) между проводами, С — емкость между проводами или с учетом емкости проводов по отношению к земле — рабочая емкость между проводами.
Для оценки режимов работы ЛЭП по реактивной мощности можно воспользоваться приведенной па рис. 2,6 простейшей П-образной схемой замещения линии, зависимостью реактивной мощности линии длиной 400 км от передаваемой мощности (рис. 2,в), а также характеристиками линий, приведенными в режимах незначительной загрузки линии, что имеет место в настоящее время в электрических сетях ЕЭС России, нескомпенсированность зарядной мощности линий при Р/Ршт < 1 приводит к генерации линиями реактивной мощности (Q/PHaT< 0, рис. 1,в) и соответствующему увеличению напряжений на линиях и шинах подстанций (ПС), а в ряде случаев к увеличению их выше допустимых значений.
Повышение напряжений вызывает неблагоприятные последствия, связанные с выходом из строя оборудования из-за повреждения изоляции, повышенными потерями электроэнергии от короны на проводах линий, увеличением уровня помех в каналах связи, необходимостью отключения ЛЭП для уменьшения общей зарядной мощности линий и потреблением реактивной мощности генераторами электростанций. Например, при минимальных нагрузках в ночное время мая 1994 г. из сети 500 и 750 кВ ЕЭС России по экспертной оценке в сеть низкого напряжения подается избыточная реактивная мощность, равная 10000 Мвар. Традиционный в прошлые годы подход к проектированию ЛЭП с неполной компенсацией их зарядной мощности был приемлем в условиях достаточно высокой загрузки линий. Поэтому сегодня в условиях общего снижения электропотребления и соответственно снижения передаваемых по ЛЭП мощностей требуется повышение степени компенсации с традиционных 40—50 до 80—120% в электрических сетях 500, 750 и 1150 кВ. Данная проблема существует в ОЭС Центра, ОЭС Урала, ОЭС Северо-Запада и в значительно меньшей степени в ОЭС Сибири и ОЭС Востока.
Наиболее экономичным способом компенсации зарядной мощности ЛЭП 330, 500, 750 и 1 150 кВ системообразующих высокой вольтных сетей является применение шунтирующих реакторов (ШР) того же класса напряжения с целью ее компенсации в месте генерации реактивной мощности.
В табл. 3 приведены параметры масляных ШР, серийно выпускаемых ОАО Холдинговая компания «Электрозавод» (г.Москва).
С точки зрения компенсации зарядной мощности линии установка реакторов может осуществляться как на линии, так и на шинах ПС. Однако более целесообразным является установка ШР на линиях, особенно длинных, так как при этом решаются также вопросы снижения перенапряжений при коммутациях ЛЭП и гашения дуги в паузу однофазных автоматических повторных включений (ОАПВ) после устранения однофазных КЗ в линии.
Шунтирующие реакторы играют ключевую роль в снижении коммутационных перенапряжений, которая учитывается следующим образом:
перед выполнением планового включения и отключения ЛЭП к ней оперативно подключают шунтирующий реакторв;
при срабатывании на одном из концов ЛЭП защиты от повышения напряжения первая ее ступень с уставкой 1,1 Uф и небольшой выдержкой времени включает все реакторы данного конца и, если повышение напряжения не устранилось, производится отключение ЛЭП;
при срабатывании любой защиты линии и подаче команды на отключение одной или трех фаз одновременно включаются все фазы всех реакторов, если они по условиям передаваемой по ЛЭП мощности были отключены. С учетом времени отключения линейного выключателя подключение реакторов происходит на 0,05 с позже отключения линии с первого ее конца. Поэтому АПВ и возможное последующее отключение ЛЭП при неуспешном АПВ происходит при полном количестве подключенных реакторов.
Обычно выключатели (включатели—отключатели) имеют искровые промежутки, которые при отказе выключателя на включение или до окончания указанных выше 0,05 с пробиваются перенапряжением в случае его возникновения, обеспечивая подключение реакторов к линии. Нижний предел пробивного напряжения искрового промежутка выбирается из условия отстройки от напряжений при качаниях в ЛЭП, а верхний должен быть меньше нижнего значения пробивного напряжения разрядника (около 1,4—1,5Uф), что гарантирует подключение реактора при соответствующих перенапряжениях. Отметим, что для искрового промежутка включателя—отключателя 750 кВ диапазон пробивных напряжений с вероятностью 0,9 нормирован значениями (1,2—1,8)Uф, а 1150 кВ — (1,15—1,63) Uф.