Информация и энтропия
Обсуждая понятие информация, невозможно не затронуть другое смежное понятие – энтропия[1]. Впервые понятия энтропия и информация связал К.Шеннон.
![]() | Клод Элвуд Шеннон (Claude Elwood Shannon), 1916-2001 — дальний родственник Томаса Эдисона, американский инженер и математик, был сотрудником Bell Laboratories с 1941 дo 1972 г. В его работе "Математическая теория связи" (https://cm.bell-labs.com/cm/ms/what/shannonday/), опубликованной в 1948 г., впервые определялась мера информационного содержания любого сообщения и понятие кванта информации — бита. Эти идеи легли в основу теории современной цифровой связи. Другая работа Шеннона "Communication Theory of Secrecy Systems", опубликованная в 1949 г., способствовала превращению криптографии в научную дисциплину. Он является основателем теории информации, нашедшей применение в современных высокотехнологических системах связи. Шеннон внес огромный вклад в теорию вероятностных схем, теорию автоматов и теорию систем управления — науки, объединяемые понятием «кибернетика». |
Физическое определение энтропии
Впервые понятие энтропии ввел Клаузиус в 1865 г. как функцию термодинамического состояния системы
S = Q/T,
где Q – теплота, T - температура.
Физический смысл энтропии проявляется как часть внутренней энергии системы, которая не может быть превращена в работу. Клаузиус эмпирически получил эту функцию, экспериментируя с газами.
Л.Больцман (1872г.) методами статистической физики вывел теоретическое выражение энтропии
S = K lnW,
где К – константа; W – термодинамическая вероятность (количество перестановок молекул идеального газа, не влияющее на макросостояние системы).
Энтропия Больцмана выведена для идеального газа и трактуется как мера беспорядка, мера хаоса системы. Для идеального газа энтропии Больцмана и Клаузиуса тождественны. Формула Больцмана стала настолько знаменитой, что начертана в качестве эпитафии на его могиле. Сложилось мнение, что энтропия и хаос есть одно и то же. Несмотря на то, что энтропия описывает только идеальные газы, ее некритично стали привлекать для описания более сложных объектов.
Сам Больцман в 1886г. попытался с помощью энтропии объяснить, что такое жизнь. По мнению Больцмана, жизнь это явление, способное уменьшать свою энтропию. Согласно Больцману и его последователям, все процессы во Вселенной изменяются в направлении хаоса. Вселенная идет к тепловой смерти. Этот мрачный прогноз долго господствовал в науке. Однако углубление знаний об окружающем Мире постепенно расшатали эту догму.
Классики не связывали энтропию с информацией.
Энтропия как мера информации
Заметим, что понятие "информация" часто трактуется как "сведения", а передача информации осуществляется с помощью связи. К. Шеннон рассматривал энтропию как меру полезной информации в процессах передачи сигналов по проводам.
Для расчета энтропии Шеннон предложил уравнение, напоминающее классическое выражение энтропии, найденное Больцманом. Рассматривается независимое случайное событие x с N возможными состояниями и pi—вероятность i-го состояния. Тогда энтропия события x
Эта величина также называется средней энтропией. Например, речь может идти о передаче сообщения на естественном языке. При передаче различных букв мы передаем разное количество информации. Количество информации на букву связано с частотой употреблений этой буквы во всех сообщениях, формируемых на языке. Чем более редкую букву мы передаем, тем больше в ней информации.
Величина
Hi = Pi log2 1/Pi = ‑Pi log2 Pi,
называется частной энтропией, характеризующей только i-e состояние.
Поясним на примерах. При бросании монеты выпадает орел или решка[2], это определенная информация о результатах бросания.
Для монеты число равновероятных возможностей N = 2. Вероятность выпадения орла (решки) равна 1/2.
1
При бросании кости получаем информацию о выпадении определенного количества очков (например, трех). В каком случае мы получаем больше информации?
Для кости число равновероятных возможностей N = 6. Вероятность выпадения трех очков кости равна 1/6. Энтропия равна 2.58. Реализация менее вероятного события дает больше информации. Чем больше неопределенность до получения сообщения о событии (бросание монеты, кости), тем большее количество информации поступает при получении сообщения.
Такой подход к количественному выражению информации далеко не универсален, т. к. принятые единицы не учитывают таких важных свойств информации, как ее ценность и смысл. Абстрагирование от конкретных свойств информации (смысл, ценность ее) о реальных объектах, как в дальнейшем выяснилось, позволило выявить общие закономерности информации. Предложенные Шенноном для измерения количества информации единицы (биты) пригодны для оценки любых сообщений (рождение сына, результаты спортивного матча и т. д.). В дальнейшем делались попытки найти такие меры количества информации, которые учитывали бы ее ценность и смысл. Однако тут же терялась универсальность: для разных процессов различны критерии ценности и смысла. Кроме того, определения смысла и ценности информации субъективны, а предложенная Шенноном мера информации объективна. Например, запах несет огромное количество информации для животного, но неуловим для человека. Ухо человека не воспринимает ультразвуковые сигналы, но они несут много сведений для дельфина и т. д. Поэтому предложенная Шенноном мера информации пригодна для исследования всех видов информационных процессов, независимо от "вкусов" потребителя информации.
Измерение информации
Из курса физики вы знаете, что прежде, чем измерять значение какой-либо физической величины, надо ввести единицу измерения. У информации тоже есть такая единица - бит, но смысл ее различен при разных подходах к определению понятия “информация”.
Существует несколько разных подходов к проблеме измерения информации.