Маршруты проектирования и принципы их построения.




Маршрутом проектирования называется последовательность проектных процедур, ведущая к получению требуемых проектных решений.

Основные принципы построения маршрутов проектирования:

- расчленение сложной задачи синтеза полного комплекта конструкторско - технологической документации на более простые задачи синтеза промежуточных проектных решений

- чередование процедур синтеза/и верификации

- итерационностьпроектирования

- усиление тщательности анализа (многовариантность, усложнение моделей) по мере приближения к окончательному проектному решению.

Расчленение сложной задачи синтеза на ряд простых выполняется в соответствии с блочно - иерархическим подходом к проектированию. Расчленение позволяет организовать параллельно-последовательное выполнение проектных процедур коллективом разработчиков.

Чередование процедур синтеза и верификации обусловлено тем, что для большинства задач структурного синтеза отсутствуют методы, обеспечивающие безошибочное получение проектных решений, удовлетворяющих требованиям ТЗ. Это связано с трудностями формализации задач синтеза, поэтому основные решения принимает человек на основе эвристических приемов. При этом невозможно учесть все многообразие качественных и количественных требований и избежать ошибок. Поэтому результаты предложенных при синтезе проектных решений контролируются выполнением верификации.

Итерационность проектирования обусловлена двумя факторами. Во-первых, она вытекает из особенностей блочно-иерархического подхода. Действительно, при нисходящем проектировании на n-м иерархическом уровне можно лишь предположительно судить о свойствах неспроектированных элементов, которые будут разрабатываться на следующем (n+1)-м уровне. При восходящем проектировании неопределенность связана с требованиями ТЗ, корректность которых может быть установлена только при выполнении процедур самого верхнего иерархического уровня. Поэтому ошибочность или неоптимальность решений, полученных на предыдущих этапах, выявляется в последующем, что требует возврата к предыдущим этапам для перепроектирования. Во-вторых, итерационностьсвязана с чередованием синтеза и верификации, представляющим собой последовательное приближение к приемлемому проектному решению. Очевидно, что на первых итерациях синтезируемые варианты хуже с точки зрения выполнения ТЗ, чем последующие. Поэтому на первых итерациях с помощью довольно приближенных моделей полученные варианты оцениваются быстро и просто. Чем ближе очередной вариант к окончательному решению, тем более точное и всестороннее исследование требуется для его оценки. Следовательно, в процедурах верификации нужно использовать не одну модель объекта, а иерархический ряд моделей, различающихся сложностью и точностью.

Усиление тщательности анализа по мере приближения к окончательному решению выражается также в том, что проверка производится по все большему числу показателей, оговариваемых в ТЗ, зачастую с учетом статистического характера параметров и нестабильности внешних условий.

Подходы к верификации.

Существуют два подхода к верификации проектных процедур: аналитический и численный.

Аналитический подход основан на использовании формальных методов доказательства соответствия двух сравниваемых описаний. В настоящее время класс объектов, для которых удается реализовать аналитический подход, ограничен.

Численный подход основан на математическом моделировании процессов функционирования проектируемых объектов. Моделирование—это исследование объекта путем создания его модели и оперирования ею с целью получения полезной информацииоб объекте. При математическом моделировании исследуется математическая модель (ММ) объекта.

Математической моделью технического объекта называется совокупность математических объектов (чисел, скалярных переменных, векторов, матриц, графов и т. п.) и связывающих их отношений, отражающая свойства моделируемого технического объекта, интересующие инженера-проектировщика.

Математическая модель, отражающая поведение моделируемого объекта при заданных изменяющихся во времени внешних воздействиях, называется имитационной.

При конструировании необходимо определить прежде всего геометрические и топологические свойства объектов: форму деталей и их взаимное расположение в конструкции. Эти свойства отображаются с помощью структурных математических моделей, которые могут быть выражены уравнениями поверхностей и линий, системами неравенств, графами и т. п.

При функциональном проектировании моделируют состояние или процессы—последовательности сменяющих друг друга состояний объекта. Такое моделирование осуществляется с помощью функциональных математических моделей. Типичная форма функциональных ММ—система уравнений, выражающая взаимосвязи между фазовыми ui (характеризуют состояние объекта), внешними qk (характеризуют состояние внешней по отношению к объекту среды) и независимыми переменными, которыми могут быть время t и про­странственные координаты х1, х2, х3. Решением системы уравнений являются зависимости элементов вектора V фазовых переменных от Z =(t, х1, х2, х3), представляемых в виде совокупности графиков или в табличной форме.

Верификация на основе моделирования заключается в установлении соответствия проектного решения, представленного математической моделью Мпр, исходному (эталонному) описанию, заданному в виде ТЗ или модели Мэт иного иерархического уровня или аспекта, нежели Мпр. Обе модели в общем случае имеют разные размерности и состав векторов фазовых переменных. При верификации должны использоваться одинаковые векторы внешних параметров Q= (q1,q2,...,ql). В этом случае обе модели должны приводить к одинаковым, в пределах заданной точности, зависимостям Vэт(Z) и Vпр(Z), где Vэт и Vпр—векторы фазовых переменных на выходах проектируемого объекта (или, что то же самое, на границах, отделяющих объект от внешней среды). Типичные внешние параметры—температура окружающей среды, напряжения источников питания, параметры входных сигналов и нагрузки. Соответствие двух описаний (моделей), в указанном выше смысле, называют функциональной эквивалентностью.

Векторы Z, Q, Vэт и Vпр или их отдельные элементы могут быть как дискретными (в частности, элементами векторов Vэт и Vпр могут быть булевы переменные), так и непрерывными

Если в результате моделирования для каждого тестового воздействия получают с оговоренной точностью совпадение выходных параметров, рассчитанных с помощью сравниваемых моделей, то говорят о соответствии (корректности) проверяемого описания. В практических задачах количество точек пространства (Z, Q) слишком велико, поэтому актуально сокращение числа испытаний при верификации.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: