Расчет неразветвленных магнитных цепей




МТ.19 (30.10.2020)

ОП.12 Общая электротехника с основами электроники

Преподаватель Жерневская И.Е.

Тема 3: Электромагнетизм

Цель занятия: Изучить и законспектировать основные понятия лекционного материала. Сформировать систему знаний и основных понятий о задачах и методах расчета неразветвленной магнитной цепи; об электромагнитных силах, энергии магнитного поля; об устройстве и принципе работы электромагнитов и об их практическом применении

 

Задание:

1. Изучить лекционный материал. Краткий опорный конспект лекционного материала оформить в рабочей тетради.

2. Посмотреть презентацию на тему «Магнитные цепи».

3. Подготовить презентацию на тему «Электромагниты и их техническое использование».

Презентацию выслать на дистанционную почту (адреса для обратной связи указаны ниже).

4. Дать ответы на контрольные вопросы (см. в конце лекционного материала).

Ответы на контрольные вопросы (с указанием дисциплины, фамилии и инициалов, даты и темы) оформить письменно в рабочей тетради, сфотографировать на телефон и выслать на дистанционную почту (адреса для обратной связи указаны ниже). Фото должны быть качественными и неперевернутыми!

 

В случае, если работа сдана позже указанного срока, оценка за работу может быть снижена!

Срок выполнения задания — до 02.11.2020!

Консультации по тел. 0713844123

Обратная связь:

1. zhernevskaja.inna@mail.ru

2. https://vk.com/zhernevskaya

3. https://ok.ru/profile/519483261262

4. Viber (+380713844123)

5. WhatsApp (+380713844123)

6. dist-obuchenie@mail.ru

Рекомендуемая литература:

1. Данилов И. А., Иванов П. М. Общая электротехника с основами электроники — М.: Мастерство, 2001

2. В. Е. Китаев Электротехника с основами промышленной электроники. Учебное пособие для проф.-тех. училищ. — М.: Высш. школа, 1980

3. Задачник по электротехнике: учеб. пособие для нач. проф. образования: учеб. пособие для сред. проф. образования \ [П.Н. Новиков, В.Я. Кауфман, О.В. Толчеев и др.] - М.: Академия, 2007

Лекция

Тема 3: Электромагнетизм

План лекции

Расчет неразветвленной магнитной цепи

Электромагнитные силы

Энергия магнитного поля

Электромагниты и их применение

Расчет неразветвленных магнитных цепей

1.1 “Прямая” задача для неразветвленной магнитной цепи

Решение задач подобного типа осуществляется в следующей последовательности:

1. Намечается средняя линия которая затем делится на участки с одинаковым сечением магнитопровода.

2. Исходя из постоянства магнитного потока вдоль всей цепи, определяются значения индукции для каждого i-го участка.

 

 

3. По кривой намагничивания для каждого значения находятся напряженности на ферромагнитных участках; напряженность поля в воздушном зазоре определяется согласно выражению:

4. По второму закону Кирхгофа для магнитной цепи определяется искомая НС путем суммирования падений магнитного напряжения вдоль контура:

,

где -длина воздушного зазора.

1.2 “Обратная” задача для неразветвленной магнитной цепи

Решение задач подобного типа осуществляется в следующей последовательности:

1. Задаются значениями потока и определяют для них НС как при решении “прямой” задачи. При этом следует стремиться подобрать два достаточно близких значения потока, чтобы получить несколько меньшую и несколько большую заданной величины НС.

 

 

2. По полученным данным строится часть характеристики магнитной цепи (вблизи заданного значения НС), и по ней определяется поток, соответствующий заданной величине НС.

При расчете неразветвленных магнитных цепей, содержащих воздушные зазоры, удобно использовать метод пересечений, при котором искомое решение определяется точкой пересечения нелинейной вебер-амперной характеристики нелинейной части цепи и линейной характеристики линейного участка, строящейся на основании уравнения

 

Электромагнитные силы

Электромагнитные силы являются наиболее распространенными в природной среде. Благодаря им мы можем видеть друг друга, поскольку свет также является проявлением электромагнитного взаимодействия.

Действия электромагнитных сил подчиняются фундаментальным законам взаимодействия заряженных частиц и тел. Электромагнитные силы возникают между элементарными частицами, которые имеют электрический заряд. Электромагнитное взаимодействие возникает и реализуется только при помощи электромагнитного поля.

Энергия, которая заключена в магнитное поле, проявляет себя при помощи электромагнитных сил, что возникают при взаимодействии движущихся электрических зарядов и магнитного поля.

Электромагнитная сила, которая возникает в магнитном поле при движении электрического заряда, действует на поле в направлении, что перпендикулярно направлению движению силовых линий, а также стремится вытолкнуть заряд за его пределы.

Если в магнитное поле поместить проводник с током I, то между магнитным полем и электронами, которые проходят по проводнику, возникнут электромагнитные силы, что образуют результирующую силу F, стремящуюся вытолкнуть из магнитного поля проводник.

Электромагнитную силу можно определить при помощи закона Ампера. Он сформулирован так: электромагнитная сила, которая действует на проводник с электрическим током, что находится в магнитном поле и располагается перпендикулярно направлению данного поля, равна произведению индукции поля B, силы тока I и длины проводника l.

F=IBl

 

По правилу левой руки можно определить направление действия силы F: левая рука располагается так, чтобы магнитные линии входили прямо в ладонь, а четыре вытянутых пальца совмещались с направлением электрического тока – тогда большой палец, что расположен под прямым углом, укажет направление действия силы.

Сила возникнет только в том случае, если проводник располагается под некоторым углом или перпендикулярно силовым линиям магнитного поля. Если проводник располагается вдоль силовых линий магнитного поля, то электромагнитная сила приравнивается нулю.

Чтобы изменить направление электромагнитной силы, нужно изменить направление магнитного поля или направление электрического тока в проводнике.

Электромагнитная сила F возникает при взаимодействии магнитного поля и проводника с током. Ее возникновение наглядно можно представить как результат взаимодействия магнитных полей. Собственное круговое магнитное поле возникает вокруг проводника с электрическим током, оно будет складываться с внешним полем. При этом справа от проводника, в котором силовые линии поля совпадают с внешними линиями магнитного поля, осуществляется разрежение силовых магнитных линий.

Силовые линии магнитного поля обладают свойством упругости, которое напоминает свойство резиновых нитей, что стремятся сократиться по длине и вытолкнуть проводник из места сгущения силовых линий в сторону их разрежения. В результате этого и возникает электромагнитная сила F.

Если в магнитное поле поместить не проводник, а катушку или виток с током, и расположить их вертикально, то используя правило левой руки, можно определить, что электромагнитные силы, действующие на них, направляются в разные стороны. В результате взаимодействия двух сил возникает вращающий момент M, который приведет к повороту катушки или витка.

M=FD,

где D - это расстояние между сторонами катушки или витка. Виток будет вращаться в магнитном поле, пока не займет положение, что будет перпендикулярным силовым линиям поля. Для того чтобы увеличить вращающий момент в электродвигателях, применяется не один виток, а несколько.

 

Энергия магнитного поля

Вокруг проводника с током существует магнитное поле, которое обладает энергией. Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии. В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равна собственной энергии тока. Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.

Энергия магнитного поля показывает, какую работу затратил электрический ток в проводнике (катушке индуктивности) на создание этого магнитного поля. Естественно, эта энергия будет напрямую зависеть от индуктивности проводника, вокруг которого магнитное поле создается.

Оказывается, энергия магнитного поля равна половине про­изведения индуктивности цепи на квадрат силы тока, т. е.

Сравнивая эту формулу с формулой для кинетической энергии, нетрудно убедиться в том, что они очень похожи одна на другую

Эта формула говорит нам о том, что кинетическая энергия прямо пропорциональна массе движущегося предмета и квад­рату скорости его движения.

Все это не имеет, конечно, прямого отношения к электро­технике. Однако, нередко пользуются механи­ческими аналогиями при рассмотрении электромагнитных яв­лений, сравнивая энергию магнитного поля с кинетической энергией, явление самоиндукции — с инерцией и, наконец, ин­дуктивность с механической массой. Из сопоставления этих формул следует также, что силе тока в механике соответствует скорость движения.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-12-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: