Рассмотрим решения некоторых практических упражнений.
Задание 2(е)
На плоскости даны точки А(11; -5), В(6;7), С(-10; -5). Найти уравнение биссектрисы угла А.
Решение задания 2(е)
Найдем направляющий вектор биссектрисы как сумму ортов векторов и
,
или (умножая на )
.
Имеем
; ;
; .
Тогда
.
Таким образом, в качестве направляющего вектора биссектрисы угла А можно взять вектор и уравнение биссектрисы будет иметь вид
.
Задание 3
Дана точка (0;2) пересечения медиан треугольника и уравнения двух его сторон 5х – 4у + 15 = 0 и 4х + у – 9 = 0. Найти координаты вершин треугольника и уравнение третьей стороны.
Решение Координаты одной вершины найдем как координаты точки пересечения данных сторон, для чего решим систему уравнений
Получаем или
Точка Оц пересечения медиан треугольника называется его центром. Отметим одно свойство центра треугольника, которое используем для нахождения координат остальных вершин:
; ,
где хц, уц – координаты центра треугольника;
хi, yi – координаты i-ой вершины треугольника,
i = 1-3.
Для доказательства этих формул рассмотрим треугольник А1А2А3, где Аi(xi;yi), i = 1-3 (см.рис.2.1).
Рис.2.1. Вспомогательный чертеж к заданию 3
Пусть В середина стороны А1А2. Тогда А3В – медиана треугольника А1А2А3. По известному из элементарной геометрии свойству медиан треугольника .
Тогда координаты точки В найдем по формулам
и ,
а координаты центра Оц из векторного соотношения , которое в координатной форме записывается так
, .
Отсюда, выражая хц и уц через xi, yi, получим требуемые формулы.
Вернемся к решению задания 3. Используя доказанные формулы, полагая в них х1 = 1 и у1 = 5, хц = 0 и уц = 2, получим два уравнения, которым должны удовлетворять координаты остальных двух вершин
|
; ,
откуда
х2 + х3 = -1; у2 + у3 = 1.
Еще два уравнения получим, если потребуем, чтобы искомые точки, вершины треугольника, принадлежали заданным сторонам, т.е. их координаты удовлетворяли уравнениям этих сторон
5х2 – 4у2 + 15 = 0;
4х3 + у3 – 9 = 0.
Итак, для определения четырех неизвестных х2, у2, х3, у3, мы имеем четыре независимых (!) условия (уравнения)
Решив эту систему, получим х2 = -3, у2 = 0, х2= 2, у3 = 1.
Наконец, уравнение третьей стороны запишем как уравнение прямой, проходящей через две заданные точки (-3;0) и (2;1)
или .
Итак, уравнение третьей стороны x – 5у + 3 = 0, а вершины треугольника имеют координаты (1;5), (-3;0), (2;1).
Задание 7
Составить уравнение линии, для каждой точки М которой, отношение расстояний до точки F() и до прямой
равно .
Привести уравнение линии к каноническому виду, определить тип линии и построить линию на чертеже. Показать на чертеже фокусы, директрисы, асимптоты (если они имеются у построенной линии).
Замечание. Отметим, что в заданиях этого модуля ; ; .
Пусть n = 101. Тогда:
, т.к. ;
, т.к. ;
, т.к. .
Итак, для n = 101 первая часть задания 7 принимает вид:
Составить уравнение линии, для каждой точки М которой, отношение расстояния до точки F(-4;1) и до прямой x = 1
равно .
Решение задания 7 (для n = 101).
Пусть М(х;у) произвольная точка искомой линии, r – расстояние от М до F и d – расстояние от точки М до прямой x = 1. Тогда
и .
По условию , т.е. d = 2r.
Итак,
- уравнение искомой линии.
Упростим уравнение линии и приведем его к каноническому виду. Для этого возведем обе части уравнения в квадрат и выполним следующие преобразования уравнения
|
х2 – 2х +1 = 4х2 + 32х + 64 + 4(у – 1)2,
3х2 + 34х + 4(у – 1)2 + 63 = 0,
,
.
Последнее уравнение – это каноническое уравнение эллипса с полуосями и (), центр которого находится в точке с координатами . Координаты вершин эллипса
и , т.е. (-9;1), , ,
. Построим эллипс на чертеже (см.рис.2.2).
Рис.2.2. Эллипс с уравнением
Фокусы эллипса имеют координаты , где .
.
Итак, координаты фокусов F1(-4;1), F2(;1).
Директрисы эллипса имеют уравнения , где е – эксцентриситет эллипса
.
Уравнения директрис , т.е.
D1: x = 1;
D2: .
Отметим фокусы и директрисы эллипса на рис.2.2.
Замечание.
Обратите внимание на совпадение фокуса F1 с точкой, данной в условии задания 7, на совпадение директрисы D1 с прямой х = 1 из условия этого задания, и совпадение эксцентриситета е с параметром е в условии. По этому поводу см. теоретическое упражнение 18.
ЗАДАНИЕ 4(м)
В пространстве даны точки А(-2; -4;1), В(3;1; -1), С(5;1;1),
S(1;-4;0). Найти координаты центра и радиус вписанной в пирамиду SABC сферы (условие сформулировано для n = 101).
Решение задания 4(м)
Пусть точка О(x0;y0;z0) – центр сферы, вписанной в пирамиду SABC. Найдем точку О как точку, равноудаленную от граней пирамиды. Для этого найдем уравнения всех граней и расстояния от точки О до этих граней (уравнения некоторых граней находятся в предшествующих пункту М пунктах задания 4).
Грань АВС. Уравнение грани
или 5х – 7у – 5z – 13 = 0.
Точки О и S лежат по одну сторону от грани АВС, поэтому отклонения этих точек от грани АВС имеют одинаковые знаки. Отклонение (S) точки S от грани АВС равно
> 0.
|
Тогда
δABC(О) = 5х0 – 7у0 – 5z0 – 13 > 0
и расстояние
.
Аналогично все делается для граней ABS, BCS, CAS.
Грань ABS имеет уравнение 5х + у + 15z – 1 = 0 и
.
Грань BCS имеет уравнение 5х – 3у – 5z – 17 = 0 и
.
Наконец, грань CAS имеет уравнение 5х – 7у + 15z + 33 = 0 и
.
Так как О – центр сферы, вписанной в пирамиду SABC, то
d(O; ABC) = d(O; ABS) = d(O; BCS) = d(O; CAS) = r,
где r – радиус вписанной сферы.
Тогда координаты точки О должны удовлетворять системе
или системе
В отличие от других заданий этого модуля, коэффициенты и решение этой системы найдем приближенно, с помощью микрокалькулятора или ЭВМ. Получим систему
и ее решение
х0 = 1,758347, у0 = - 1,57776, z0 = 0,2034251.
Тогда
и уравнение вписанной сферы
.
Контрольные вопросы
1. Общее уравнение прямой на плоскости. Нормальный вектор прямой. Угол между прямыми. Условия параллельности и перпендикулярности.
2. Уравнение прямой с угловым коэффициентом. Угол между прямыми. Условия параллельности и перпендикулярности.
3. Каноническое и параметрическое уравнения прямой на плоскости. Направляющий вектор прямой. Угол между прямыми. Условия параллельности и перпендикулярности.
4. Уравнение прямой, проходящей через две заданные точки.
5. Уравнения прямых, проходящих через данную точку параллельно и перпендикулярно данной прямой (3 случая задания данной прямой: общим уравнением, каноническим уравнением, уравнением с угловым коэффициентом).
6. Общее уравнение плоскости в пространстве, нормальный вектор плоскости. Угол между плоскостями. Условие параллельности и перпендикулярности.
7. Уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой.
8. Общее, каноническое и параметрическое уравнения прямой в пространстве. Угол между прямыми. Условия параллельности и перпендикулярности.
9. Угол между прямой и плоскостью в пространстве. Условие параллельности и перпендикулярности прямой и плоскости.
10. Уравнение плоскости, проходящей через данную точку, перпендикулярно данной прямой. Уравнение прямой, проходящей через данную точку, перпендикулярно данной плоскости.
11. Расстояние от точки до: прямой на плоскости; прямой в пространстве; плоскости в пространстве.
12. Уравнение линии на плоскости. Общее уравнение кривой второго порядка.
13. Каноническое и параметрическое уравнения окружности.
14. Эллипс (фокусы и директрисы, фокальные радиусы точки, эксцентриситет). Каноническое и параметрическое уравнения эллипса.
15. Гипербола (фокусы, директрисы и асимптоты, фокальные радиусы точки, эксцентриситет). Каноническое и параметрическое уравнения гиперболы.
16. Парабола (фокус и директриса, фокальный радиус точки, эксцентриситет). Каноническое уравнение параболы.
17. Приведение общего уравнения кривой второго порядка к каноническому виду.
18. Полярные координаты на плоскости. Уравнение линии в полярных координатах.
19. Уравнение поверхности в пространстве. Общее уравнение поверхностей второго порядка.
20. Основные типы поверхностей второго порядка и их канонические уравнения.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Бугров Н.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. – М.: Наука, 1980. 176 с.
2. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Ч.1: Учебное пособие для студентов втузов. – 3-е изд., перераб. и доп. – М.: Высшая школа, 1980. 320 с.
3. Ильин В.А., Позняк Э.Г. Аналитическая геометрия. – М.: Наука, 1981. 232 с.
4. Клетеник Д.В. Сборник задач по аналитической геометрии. – М.: Наука, 1980. 240 с.
5. Сборник задач по математике для втузов. Линейная алгебра и основы математического анализа/Под ред. А.В. Ефимова, Б.П. Демидович. – М.: Наука, 1981, 464 с.
6. Высшая математика. Методические указания и контрольные задания/Под ред. Ю.С. Арутюнова. – М.: Высшая школа, 1985.
7. Гусак А.А. Пособие к решению задач по высшей математике. – Изд. 3-е. – Минск: Изд-во БГУ, 1973. 532 с.
8. Кузнецов А.А. Сборник заданий по высшей математике (типовые расчеты): Учеб. пособие для втузов. – М.: Высшая школа, 1983. 175 с.
9. Погорелов А.В.Аналитическая геометрия.– М.:Наука, 1968. 176с