Биохимические и клеточные эффекты.




Воздействие на экологическую систему, будь это пустыня, луг или лес, на первых порах не отражается на системе или организме в целом; любые нарушения или стрессы сначала дают себя знать на молекулярном уровне отдельного растения или системы растений. В тех случаях, когда стрессы воздействуют на процессы, протекающие в клетке, растение начинает слабеть; при этом происходят изменения в процессах обмен, и сама клетка подвергается воздействию.

Каждое из загрязнений воздействует своим особым образом, однако все загрязнения оказывают влияние на некоторые основные процессы, в частности нарушают водный баланс. В первую очередь воздействию подвергаются системы, регулирующие поступление загрязняющих веществ, а также химические реакции, ответственные за процессы фотосинтеза, дыхания и производство энергии.

Рассмотрим наиболее вредные загрязняющие вещества: диоксид серы, фториды, озон.

 

Диоксид серы.

Загрязняющее вещество первоначально поступает в растение через устьица – отверстия, имеющееся на листьях и в нормальных условиях использующихся для газообмена. Диоксид серы, прежде всего, воздействует на клетки, которые регулируют открывание этих отверстий. Степень их открывания и факторы, влияющие на нее, в начальный период являются основными параметрами, определяющими интенсивность воздействия загрязнителей. Даже при очень малых концентрациях диоксид серы способен оказывать стимулирующее действие, в результате которого при достаточно высокой относительной влажности устьица остаются постоянно открытыми. В тоже время при высоких концентрациях диоксида углерода устьица закрываются. Кроме того, в случае высокой влажности устьица открываются, в случае низкой – закрываются.

Попав в межклеточные пространства листа, загрязняющее вещество вступает в контакт с мембраной окружающей клетку. При нарушении целостности этой полупроницаемой мембраны нарушается баланс питательных веществ и процесс поступления ионов.

Пройдя в клетку, диоксид серы взаимодействует с органеллами – метохондриями и хлоропластами, в том числе и с их мембранами, что может привести к весьма серьезным последствиям.

Однако сера необходима для нормального роста растений, и присутствие SO2 может оказывать влияние и на усвояемость серы. Растения потребляют серу в восстановленном состоянии. В присутствии SO2 основным продуктом становится сульфат; присутствует также цистеин, глютатион, и, по меньшей мере, одно не идентифицированное вещество. Основными промежуточными соединениями при восстановлении сульфатов являются сульфиты.

Возможна также дезактивация ферментов. Диоксид серы ингибирует различные биохимические реакции. Сульфиты, обладающие слабокислотными свойствами, дезактивируют некоторые ферменты, блокируя активные центры, препятствуя протеканию основной химической реакции; это явление известно как конкурентное ингибирование. Диоксид серы является конкурентным ингибитором дифосфаткарбоксилазы, препятствующим фиксации СО 2 в процессе фотосинтеза.

Хотя точный механизм действия SO2 на молекулярном уровне неизвестен, можно предположить, что основную роль играют присутствие избыточного количества окисленных форм серы, нарушение баланса с восстановленными формами и воздействие на жизненно важные ферменты.

 

Фториды.

Последствия воздействия фторидов на процессы обмена в клетке в общих чертах схожи с воздействием диоксида серы, хотя их механизмы, естественно различаются. Фториды содержатся во всех растительных тканях, однако их избыток может оказывать токсическое действие. Большинство растений способно накапливать в листьях концентрации фторидов до 100 – 200 млн.-1 и более, без каких – либо отрицательных последствий. Некоторые виды, например, чай и камелия, могут накапливать фториды в листьях в очень высоких концентрациях – нормальное содержание их составляет несколько сот миллионных долей.

Для большинства растений порог токсичности равен 50 – 100 млн.-1 фторидов и при более высоких концентрациях могут происходить изменения в процессах обмена и в структуре клетки. Гранулирование, плазмолиз и сплющивание хлоропластов являются первыми симптомами, которые можно наблюдать под микроскопом. В сосновых иглах наблюдается гипертрофия питающих клеток флоэмы и передающей ткани; аналогичные симптомы наблюдаются и в других стрессовых ситуациях, например при увядании и при засыхании.

Фториды воздействуют на целый ряд ферментов и обменных процессов. В растениях, окуренных парами HF, могут наблюдаться изменения в содержании органических кислот, аминокислот, свободных сахаров, крахмала и других полисахаридов; эти изменения происходят до проявления видимых симптомов. Фториды изменяют механизм распада глюкозы, что может вызвать отклонения от нормального развития листьев.

Воздействие на ферменты приводит к ингибированию реакции, которая осуществляется с участием этого фермента. Хотя непосредственное влияние может оказываться только на одну из стадий многостадийного процесса, тем не менее, это приводит к нарушениям всего процесса в целом. Это относится, в частности, к процессу фотосинтеза, который, ингибируется фторидами. Один из механизмов воздействия на фотосинтез состоит в ингибировании хлорофилла. Добавки больших количеств магния позволяют конпенсировать ингибирующее действие в экспериментах. Фториды способны также влиять на фотосинтез через энергетические процессы, в которых участвуют аденозинфосфаты и нуклеотиды.

 

Озон.

Озон, третий из наиболее вредных загрязняющих веществ. Сначала он воздействует на растения на молекулярном уровне. И в этом случае первичным объектом воздействия оказываются устьица листьев и мембраны. Озон способствует закрыванию устьиц, однако степень воздействия сильно зависит от величины фоновой концентрации озона до наступления интенсивного воздействия. Устьица растений, выращивавшихся в профильтрованном воздухе, при действии значительных концентраций озона закрываются с более высокой скоростью.

Первичные гистологические изменения, которые можно наблюдать визуально, происходят в хлоропластах, которые через короткое время подвергаются грануляции, разрыву и приобретают светло-зеленую окраску. Прежде всего, воздействию подвергается строма; ее гранулирование может быть связано с изменением состава ионов в хлоропластах или с нарушением проницаемости мембран, связанным с действием озона. Мембраны хлоропластов разрушаются, хлорофилл диспергируется в цитоплазме, повреждается оболочка ядра клетки, и происходит плазмолиз клетки (рисунок 1).

рис. 1. Поражение растений озоном на ранней стадии:

Устьице, основной канал для поступления озона; 2 – разрушение протопласта; 3 – разрыв хлоропластов; 4 – нормальный хлоропласт; 5 – палисадный слой ткани листа, в котором происходят все изменения.

 

Озон обладает очень высокой реакционной способностью и теоретически можно ожидать, что он полностью израсходуется в результате реакции с первыми же молекулами, с которыми он вступает в контакт в оболочке клетки и клеточной мембране.

Разрыв клеточной оболочки и мембраны приводит к резкому изменению нормальных процессов обмена, вызывая увеличение потерь воды и нарушая баланс ионов. Установлено, что озон способен модифицировать аминокислоты, изменять механизм процессов белкового обмена, воздействовать на состав ненасыщенных жирных кислот. Кроме того, прослеживается очевидная связь между концентрацией загрязнений, обладающих окислительными свойствами, и уменьшением содержания хлорофилла и некоторых растворимых белков. Озон оказывает также сильное ингибирующее действие на процесс фиксации СО 2.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-04-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: