Эффекторные белки определяют хранение информации в организме,
Регуляторные белки – присоединяясь к ДНК или отделяясь от нее, контролируют экспрессию генов.
Внешнее воздействие приводит к изменению внеклеточной среды, вызывает в геноме каскадную реакцию, в которой выделяют две фазы:
1. Фаза активации: соответствует индукции специфических регуляторных генов из класса ранних генов. Известно около 100 ранних генов. Продуктами большинства из них являются регуляторные белки.
Активность этих белков наступает через 15-30 мин после воздействия, кратковременна (от 1 до 3-х часов) – этот процесс соответствует кратковременной и промежуточной памяти (консолидации).
Ранние гены контролируют транскрипцию поздних генов, которые являются для них мишенями. Регуляторные белки (продукты ранних генов) продуцируют экспрессию поздних генов – морфорегуляторных. Эти гены определяют вторую фазу синтеза РНК и белков.
2. Вторая фаза синтеза РНК и белков – обуславливает рост и изменение клеточных связей в структурах мозга. Вторая волна активности появляется через 3 часа после воздействия и длится около 5 часов.
Включает синтез 4-х новых белков, через 24 часа – еще 2-х белков.
Долговременная память формируется после экспрессии поздних генов и зависит от индукции новых генов через вторичных посредников.
Предполагают, что ранние эффекторные гены отвечают за синтез белков, которые сохраняют информацию в течение дней.
Поздние эффекторные гены поддерживают информацию в течение недель и месяцев.
Более подробное объяснение этой схемы:
Формирование нового опыта требует экспрессии генов в мозге.
Основным шагом в понимании биологических механизмов консолидации памяти стало открытие 1960-х годов, показавшее, что переход памяти из кратковременной в долговременную форму требует синтеза новых молекул РНК и белка, т.е. экспрессии генов. Было установлено, что волна синтеза новых белков в клетках при запоминании информации совпадает с периодом консолидации памяти, а химическая блокада экспрессии генов в этот период нарушает образование долговременной памяти.
|
Оказалось также, что "критическое окно" амнестического действия блокаторов экспрессии генов универсально для самых разных видов обучения и различных организмов, от беспозвоночных до человека. Данное предположение также хорошо согласовывалось с гипотезой об участии клеточного роста и изменения морфологии синапсов в долговременной памяти.
Таким образом, понятие долговременной памяти постепенно трансформировалось из условного обозначения относительной продолжительности явления, в компонент биологической концепции, связывающей научение и опыт с морфогенезом и развитием.
Критическим звеном этой концепции стал молекулярный механизм консолидации памяти, отождествляемый с активацией транскрипции генов в нервных клетках при научении. Однако то, какие именно гены активируются при научении и каковы их функции в нервных клетках, долгое время оставалось неизвестным.
При научении в мозге активируются гены транскрипционных факторов. Первыми генами, активация которых была обнаружена в мозге при обучении, оказались так называемые " непосредственные ранние гены ", кодирующие транскрипционные факторы. "Непосредственные ранние гены" (НРГ) были впервые обнаружены при изучении механизмов геномного ответа на действие факторов роста, запускающих процессы клеточного цикла. Индукция их транскрипции происходила, несмотря на подведение ингибиторов синтеза белка, то есть строилась на механизмах, заранее готовых для восприятия экстраклеточных стимулов. Первые из идентифицированных продуктов генов данного семейства оказались ядерными белками, связывающимися с ДНК и регулирующими транскрипцию других генов.
|
По этим свойствам данные гены значительно напоминали группу "непосредственных ранних генов" бактериофагов и эукариотических ДНК-вирусов, поэтому, по аналогии с вирусными генами, эта группа быстро активирующихся генов получила название "клеточных непосредственных ранних генов". Это же семейство часто обозначается как " гены первичного ответа ", " гены раннего ответа " или просто " ранние " гены.
Одним из первых в данной группе был клонирован ген c-fos. Его структура и свойства хорошо изучены, и он может служить прототипом генов данного семейства. Первоначально было установлено, что в ходе эмбрионального развития c-fos играет важную роль в регуляции процессов клеточного роста и пролиферации. Гены, экспрессия которых находится под контролем индуцируемых транскрипционных факторов, были названы, по аналогии с вирусными системами, " поздними" генами, " генами позднего ответа " или " эффекторными " генами, а весь двухфазный механизм регуляции транскрипции с участием этих двух классов генов является одним из наиболее универсальных способов обеспечения процессов клеточного деления и роста в развитии.
|
В середине 1980-х годов несколько исследовательских групп обнаружили экспрессию гена c-fos в мозге обучающихся взрослых животных. Это повлекло за собой широкий спектр исследований участия этого и других НРГ в самых разных задачах обучения.
Экспрессия генов — это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт — РНК или белок.
Прямое подтверждение критической роли экспрессии гена c-fos в формировании памяти дали эксперименты с избирательной блокадой его активности мозге. Эти опыты показали, что подавление трансляции мРНК c-fos в структурах мозга нарушает долговременную, но не кратковременную память в различных моделях обучения и у разных видов животных.
Сходные данные были получены и для других членов семейства непосредственных ранних генов. Общее же число кандидатных генов пластичности, индуцируемых в нервной системе, по некоторым оценкам, может составлять до 1000.
На молекулярно-генетическом уровне научение составляет с развитием единый континуум. Таким образом, при научении в нервных клетках наблюдается следующая последовательность молекулярно-генетических процессов:
Вначале рассогласование текущей ситуации с имеющимся опытом запускают активацию каскада "ранних" регуляторных генов в группах клеток, опосредующих эти процессы. Продукты "ранних" генов индуцируют, в свою очередь, экспрессию "поздних" генов, в том числе генов морфорегуляторных молекул, являющихся ключевыми участниками процессов морфогенеза при эмбриональном развитии. Эти и другие эффекторные гены стабилизируют участие нейронов в новой, сложившейся в результата обучения, функциональной системе. При этом основные молекулярно-генетические элементы и этапы молекулярного каскада дифференцировки клетки оказываются чрезвычайно сходными при научении и развитии. В определенном смысле мы можем сказать, что на молекулярном уровне научение выступает как непрекращающийся процесс развития. Однако механизмы регуляции экспрессии генов при научении имеют одно чрезвычайно важное отличие от сходных процессов в развитии.
На системном уровне активность генов в мозге при научении переходит под когнитивный контроль. Выше уже упоминалось, что вопрос о том, вызовет или нет какая-либо поведенческая ситуация экспрессию "ранних" генов в клетках мозга, критическим образом зависит от содержания прошлого индивидуального опыта животного и определяется фактором субъективной новизны данного события. Это хорошо видно из следующего эксперимента.
Мышей помещали в камеру, где они получали серию неизбегаемых электрокожных раздражений. Это вызывало у них массивную активацию экспрессии гена c-fos в ряде структур головного мозга - коре, гиппокампе и мозжечке. Однако, после того как животных регулярно подвергали этому воздействию на протяжении 6 дней, в конце концов та же самая процедура, связанная с аверсивной стимуляцией, переставала вызывать активацию c-fos в клетках мозга. Хотя животные продолжали подвергаться электрокожному раздражению, это воздействие утеряло свою новизну и перешло в категорию ожидаемых событий в системах их индивидуального опыта. Таким образом, экспрессия c-fos в данных условиях вызывается вовсе не внешними стимулами, действующими на мозг, а их несоответствием материалу инидивидуальной памяти. Наиболее демонстративно это можно было увидеть на животных специальной группы, которым наносили раздражение на протяжении пяти дней, а на шестой день помещали их в ту же камеру, но электрокожную стимуляцию они в ней не получали. Это отсутствие стимуляции вызывало на первый взгляд парадоксальный эффект - животные данной группы демонстрировали значительную активацию экспрессии гена с-fos в мозге, особенно в гиппокампе.
Следовательно, взаимоотношение процессов развития нервной системы и научения требует описания на двух различных уровнях. На уровне регуляции экспрессии геновнаучение действительно составляет с развитием мозга единый континуум. В обоих случаях дифференцировка нервных клеток зависит от активации в них определенных транскрипционных факторов. Некоторые из этих белков кодируются семейством " ранних" генов. Активация этих генов и в развивающемся и обучающемся мозге осуществляется посредством факторов роста, медиаторов и гормонов. Вслед за экспрессией транскрипционных факторов наступает вторая волна активации "поздних " или эффекторных генов.
Белковые продукты этих генов, выполняют разнообразные функции в нервных клетках. В частности, молекулы клеточной адгезии и другие синаптические белки изменяют связи нейрона, устанавливая функциональную специализацию клетки в системе межклеточных отношений. Сходство молекулярных механизмов клеточной специализации на границе между завершающими стадиями созревания нервных связей и началом их модификации в поведении настолько велико, что, пользуясь одними лишь критериями молекулярного анализа, часто невозможно определить, относится ли рассматриваемый клеточный процесс к развитию или к научению.