Ответ:!Я НАДЕЮСЬ, ЧТО N И T ОДИН ХРЕН!
Купола создают особенно благоприятные условия для пространственной работы конструктивной системы, а по расходу материалов они экономичнее других пространственных покрытий. Купольное покрытие состоит из двух основных конструктивных элементов — тонкостенной оболочки и опорного кольца (рис. 14.27, а). Если в куполе предусмотрен центральный проем, то устраивают также верхнее кольцо, окаймляющее проем.
Купол с непрерывным по контуру шарнирно-подвижным опиранием, совпадающим по направлению с касательной к оболочке, является статически определимой конструкцией (cм. рис. 14.27, а). Тонкостенные купола подобно другим пространственным покрытиям можно рассчитывать по безмоментной теории.
Элемент осесимметричного купола, ограниченный двумя меридиональными и двумя кольцевыми сечениями, находится под воздействием следующих сил: меридиональных N1, кольцевых N2 и касательных S (рис. 14.27, в), отнесенных к единице длины сечения. При осесимметричной нагрузке S=0.
Принимая обозначения — текущая угловая координата; —нагрузка на сегмент, ограниченный углом Q , из условия равновесия элемента купола (рис. 14.27. в) находят силу N1 и распор H:
N1 = Q /2пr sin ; (14.48)
Н =N1*cos = (Q /2пr) ctg . (14.49)
Рис. 14.27. К расчету купола: а — схеме купола с шарнирно-подвижным опиранием по контуру; б— часть купола, отделенная плоскостью, параллельной основанию: в — элемент купола с действующими на него внутренними силами:1 — меридиональное сечение:2 — кольцевое сечение: 3 — тангенциальные опоры по периметру.
Рис. 14.28. Шаровой статически определимого купола — расчетная схема; б, в -эпюры сил,N1 и N2 в полусферическом куполе от леса покрытия
|
На основании уравнения получают
N1/R1+N2/R2=q
где q — составляющая нагрузки, нормальная к поверхности купола,
Если в случае купола с шаровой поверхностью при R1=R2=R обозначить нагрузку от собственного веса купола на единицу поверхности g, тогда (см. рис. 14.28 а)
q =g cos; Q =2пRag
На основе эти формул и зависимости:
a=R/(1- cos ); r=Rsin
из выражений (14.48) и (14.50) находят:
N1=Rg/(1+cos ); N2=gR cos - Rg (1+cos ) (14 52)
Для полушарового купола эпюры N1 и N2 изображены на рис. 14.28, б, в. Следует отметить, что при =0 силы N1=Rg/2 (сжатие) и N2=Rg/2 (сжатие); при =п/2 силы N1= Rg (сжатие) и N2=-Rg (растяжение).
Кольцевое сечение, в котором N2=0 (шов перехода), определяется углом =51049'
Аналогично получают решение для шарового купола при снеговой нагрузке p, которая считается равномерно распределенной по горизонтальной проекции и меняющейся по поверхности купола пропорционально cos :
N1=0,5pR; N2=0,5pRcos2 (14.53)
Основные нагрузки, определяющие размеры конструкции купола. — собственный вес оболочки вместе с утеплителем и кровлей, а также снеговая нагрузка. Обе нагрузки принимают действующими осесимметрично. Ветровые нагрузки при пологих купольных покрытиях решающего значения не имеют и могут не приниматься во внимание. При высоких куполах, встречающихся реже, усилия от ветровых нагрузок определяют приемами, изложенными в теории упругости.
(Краевые усилия)
В реальных конструкциях оболочка купола оперта не свободно, а имеет упругое закрепление в опорном кольце {рис. 14.29, а) В связи с этим на опорном контуре оболочки возникают дополнительные статически неопределимые величины — изгибающий момент Мо, действующий в меридиональном направлении, и радиальный распор Но {рис. 14.29 б). Их определяют из условия совместных деформаций оболочки и опорного кольца. Влияние упругого контурного закрепления сказывается на оболочке лишь вблизи кольца и накладывается на общее ее безмоментное напряженное состояние. Задача определения краевых усилий при упругом закреплении купола по контуру впервые решена П Л. Пастернаком в 1925—1927 гг. и сведена к обычным уравнениям строительной механики. При решении используется теория длинной балки на упругом основании.
|
Рис. 14.29. К расчету купола, упругозакрепленного по контуру
а-расчетная схема Купола; б — расчетная.тема опорного угла, в— положительные направления угловых и радиальных перемещений оболочки и опорного кольца; 1 — купол; 2 — опорное кольцо
Рис. 14.30. Расчетные схемы опорного кольца при действии
в — распора: б — моментов
Купольные покрытия в большей степени соответствуют тонкостенным оболочкам, для которых справедлива безмоментная теория по всей области оболочки, кроме сравнительно узких зон в месте примыкания оболочки к опорному кольцу. В этих местах свободной деформации оболочки препятствуют опорные закрепления, которые вызывают краевые поперечные силы и изгибающие моменты (краевой эффект). Эти усилия могут быть определены обычными методами строительной механики (метод сил)
Тонкостенной осесимметричной называется оболочка, имеющая форму тела вращения толщина, которой мала по сравнению с радиусами кривизны ее поверхности.При расчете тонкостенных оболочек все нагрузки, действующие на них, прикладывают к срединной поверхности оболочки.
|
При расчете таких элементов конструкций используется безмоментная теория оболочек, основные положения которой заключаются в следующем:
1. нагрузки, действующие на поверхности оболочки, могут считаться перпендикулярными им и симметричными относительно оси вращения оболочки;
2. вследствие малой толщины оболочки сопротивление изгибу отсутствует (изгибающий момент не возникает);
3. напряжения по толщине стенки оболочки распределены равномерно.