Модель данных инвертированных таблиц




Модель данных

В модели данных описывается некоторый набор родовых понятий и признаков, которыми должны обладать все конкретные СУБД и управляемые ими базы данных, если они основываются на этой модели. Наличие модели данных позволяет сравнивать конкретные реализации, используя один общий язык.

Хотя понятие модели данных было введено Коддом, наиболее распространенная трактовка модели данных, по-видимому, принадлежит Кристоферу Дейту, который воспроизводит ее (с различными уточнениями) применительно к реляционным БД практически во всех своих книгах (см., например, [1.3]). Согласно Дейту реляционная модель состоит из трех частей, описывающих разные аспекты реляционного подхода: структурной части, манипуляционной части и целостной части.

В структурной части модели данных фиксируются основные логические структуры данных, которые могут применяться на уровне пользователя при организации БД, соответствующих данной модели. Например, в модели данных SQL основным видом структур базы данных являются таблицы, а в объектной модели данных – объекты ранее определенных типов.

Манипуляционная часть модели данных содержит спецификацию одного или нескольких языков, предназначенных для написания запросов к БД. Эти языки могут быть абстрактными, не обладающими точно проработанным синтаксисом (что свойственно языками реляционной алгебры и реляционного исчисления, используемым в реляционной модели данных), или законченными производственными языками (как в случае модели данных SQL). Основное назначение манипуляционной части модели данных – обеспечить эталонный «модельный» язык БД, уровень выразительности которого должен поддерживаться в реализациях СУБД, соответствующих данной модели.

Наконец, в целостной части модели данных (которая явно выделяется не во всех известных моделях) специфицируются механизмы ограничений целостности, которые обязательно должны поддерживаться во всех реализациях СУБД, соответствующих данной модели. Например, в целостной части реляционной модели данных категорически требуется поддержка ограничения первичного ключа в любой переменной отношения, а аналогичное требование к таблицам в модели данных SQL отсутствует.

В этой лекции мы применим понятие модели данных для обзора как подходов, предшествовавших появлению реляционных баз данных, так и подходов, которые возникли позже. Мы не будем касаться особенностей каких-либо конкретных систем; это привело бы к изложению многих технических деталей, которые, хотя и интересны, но находятся несколько в стороне от основной цели курса.

 

Ранние модели данных

Начнем с рассмотрения общих подходов к организации трех типов ранних систем, а именно, систем, основанных на инвертированных списках, иерархических и сетевых систем управления базами данных. В целом ранние системы можно охарактеризовать следующим образом1):

· Эти системы активно использовались в течение многих лет, задолго до появления работоспособных реляционных СУБД. На самом деле некоторые из ранних систем используются даже в наше время, накоплены громадные базы данных, и одной из актуальных проблем информационных систем является использование этих систем совместно с современными.

· Все ранние системы не основывались на каких-либо абстрактных моделях. Как мы упоминали, понятие модели данных фактически вошло в обиход специалистов в области БД только вместе с реляционным подходом. Абстрактные представления ранних систем появились позже на основе анализа и выявления общих признаков у различных конкретных систем.

· В ранних системах доступ к БД производился на уровне записей. Пользователи этих систем осуществляли явную навигацию в БД, используя языки программирования, расширенные функциями СУБД. Интерактивный доступ к БД поддерживался только путем создания соответствующих прикладных программ с собственным интерфейсом.

· Можно считать, что уровень средств ранних СУБД соотносится с уровнем файловых систем примерно так же, как уровень языка Cobol соотносится с уровнем языков ассемблера. Заметим, что при таком взгляде уровень реляционных систем соответствует уровню языков Ада или APL.

· Навигационная природа ранних систем и доступ к данным на уровне записей заставляли пользователей самих производить всю оптимизацию доступа к БД, без какой-либо поддержки системы.

· После появления реляционных систем большинство ранних систем было оснащено «реляционными» интерфейсами. Однако в большинстве случаев это не сделало их по-настоящему реляционными системами, поскольку оставалась возможность манипулировать данными в естественном для них режиме.

Модель данных инвертированных таблиц

 

К числу наиболее известных и типичных представителей систем, в основе которых лежит эта модель данных, относятся СУБД Datacom/DB, выведенная на рынок в конце 1960-х гг. компанией Applied Data Research, Inc. (ADR) и принадлежащая в настоящее время компании Computer Associates, и Adabas (ADAptable DAtabase System), которая была разработана компанией Software AG в 1971 г. и до сих пор является ее основным продуктом.

Организация доступа к данным на основе инвертированных таблиц используется практически во всех современных реляционных СУБД, но в этих системах пользователи не имеют непосредственного доступа к инвертированным таблицам (индексам). Кстати, когда мы будем рассматривать внутренние интерфейсы реляционных СУБД, можно будет увидеть, что они очень близки к пользовательским интерфейсам систем, основанных на инвертированных таблицах.

Структуры данных

База данных в модели инвертированных таблиц похожа на БД в модели SQL, но с тем отличием, что пользователям видны и хранимые таблицы, и пути доступа к ним. При этом:

· Строки таблиц упорядочиваются системой в некоторой физической, видимой пользователям последовательности.

· Физическая упорядоченность строк всех таблиц может определяться и для всей БД (так делается, например, в Datacom/DB).

· Для каждой таблицы можно определить произвольное число ключей поиска, для которых строятся индексы. Эти индексы автоматически поддерживаются системой, но явно видны пользователям.

Манипулирование данными

Поддерживаются два класса операций:

1. Операции, устанавливающие адрес записи и разбиваемые на два подкласса:

· прямые поисковые операторы (например, установить адрес первой записи таблицы по некоторому пути доступа);

· операторы, устанавливающие адрес записи при указании относительной позиции от предыдущей записи по некоторому пути доступа.

2. Операции над адресуемыми записями.

Вот типичный набор операций:

· LOCATE FIRST – найти первую запись таблицы T в физическом порядке; возвращается адрес записи;

· LOCATE FIRST WITH SEARCH KEY EQUAL – найти первую запись таблицы T с заданным значением ключа поиска k; возвращается адрес записи;

· LOCATE NEXT – найти первую запись, следующую за записью с заданным адресом в заданном пути доступа; возвращается адрес записи;

· LOCATE NEXT WITH SEARCH KEY EQUAL – найти cледующую запись таблицы T в порядке пути поиска с заданным значением k; должно быть соответствие между используемым способом сканирования и ключом k; возвращается адрес записи;

· LOCATE FIRST WITH SEARCH KEY GREATER – найти первую запись таблицы T в порядке ключа поиска k cо значением ключевого поля, большим заданного значения k; возвращается адрес записи;

· RETRIVE – выбрать запись с указанным адресом;

· UPDATE – обновить запись с указанным адресом;

· DELETE – удалить запись с указанным адресом;

· STORE – включить запись в указанную таблицу; операция генерирует и возвращает адрес записи.

 

Ограничения целостности

Общие правила определения целостности БД отсутствуют. В некоторых системах поддерживаются ограничения уникальности значений некоторых полей, но в основном вся поддержка целостности данных возлагается на прикладную программу.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: