Регуляция деятельности желез кишечника.




Внешние проявления сердечной деятельности

Верхушечный толчок. Сердце во время систолы желудочков совершает вращательное движение, поворачиваясь слева направо. Верхушка сердца под­нимается и надавливает на грудную клетку в области пятого межреберного промежутка. Во время систолы сердце становится очень плотным, поэтому надавливание верхушки сердца на межреберный промежуток можно видеть (выбухание, выпячивание), особенно у худощавых субъектов. Верхушечный толчок можно прощупать (паль­пировать) и тем самым определить его границы и силу.

Сердечные тоны - это звуковые явления, возникаю­щие в работающем сердце. Различают два тона: I—сис­толический и II —диастолический.

Систолический тон. В происхождении этого тона принимают участие главным образом атриовентрикулярные клапаны. Во время систолы желудочков атриовентрикулярные клапаны закрываются, и колебания их створок и прикрепленных к ним сухожильных нитей обу­словливают I тон. Кроме того, в происхождении I тона принимают участие звуко­вые явления, которые возникают при сокращении мышц желудочков. По своим звуковым особенностям I тон про­тяжный и низкий.

Диастолический тон возникает в начале диа­столы желудочков во время протодиастолической фазы, когда происходит закрытие полулунных клапанов. Коле­бание створок клапанов при этом является источником звуковых явлений. По звуковой характеристике II тон короткий и высокий.

Также о работе сердца можно судить по электрическим явлениям, возникающим в нем. Их называют биопотенциалами сердца и получают с помощью элек­трокардиографа. Они носят название электрокардио­граммы.

36. Роль поджелудочной железы в пищеварении

У взрослого человека за сутки выделяется 1,5-2 л поджелудочного сока.

В состав поджелудочного сока входят органические (протеолитические, амилолитические, липолитические ферменты) и неорганические вещества. К протеолитическим ферментам панкреатического сока относятся: трипсин, химотрипсин, панкреатопептид (эластаза) и карбоксипептидазы. Под их влиянием нативные белки и продукты их распада (высокомолекулярные полипептиды) расщепляются до низкомолекулярных полипептидов и аминокислот. В панкреатическом соке содержатся также ингибиторы протеолитических ферментов. Они имеют существенное значение в предохранении поджелудочной железы от самопереваривания (аутолиз).

К амилолитическим ферментам поджелудочного сока относятся амилаза, расщепляющая углеводы до мальтозы, мальтаза, превращающая солодовый сахар (мальто зу) в глюкозу, лактаза, расщепляющая молочный сахар (лактозу) до моносахаридов.

В состав липолитических ферментов входят липаза и фосфолипаза А. Липаза расщепляет жиры до глицерина и жирных кислот. Фосфолипаза А действует на продукты расщепления жиров.

Регуляция секреции поджелудочной железы

  1. Сложнорефлекторная
  2. Желудочная
  3. Кишечная

40 Роль кишечного сока в пищеварении

У взрослого человека за сутки отделяется 2—3 л кишечного сока слабощелочной реакции.

Представителями пептидаз являются лейцина-минопептидаза и аминопептидаза, расщепляющие продукты переваривания белка, образующиеся в желудке и двенадцатиперстной кишке. В кишечном соке содержатся кислая и щелочная фосфатазы, участвующие в переваривании фосфолипидов, липаза, которая действует на нейтральные жиры. В кишечном соке содержатся карбогидразы (амилаза, мальтаза, сахараза, лактаза), расщепляющие полисахариды и дисахариды до стадии моносахаров. Специфическим ферментом кишечного сока является энтерокиназа, которая катализирует превращение трипсиногена в трипсин.

Регуляция деятельности желез кишечника.

За счет нервных воздействий регулируется образование ферментов. В условиях денервации тонкого кишечника наблюдается «разлад» в работе секреторной клетки: сока выделяется много, но он беден ферментами.

Кора большого мозга принимает участие в регуляции секреторной активности тонкого кишечника.

Стимулирует секрецию кишечных желез гормон энтерокринин - стимулирует отделение главным образом жидкой части сока.

 

41. Всасывание питательных веществ

Всасывание — универсальный физиологический процесс, который связан с переходом разного рода веществ через слой каких-либо клеток во внутреннюю среду организма. Благодаря всасыванию в желудочно-кишечном тракте организм получает всё необходимое для жизнедеятельности. Всасывание происходит на всем протяжении пищеварительного канала, но основным местом является тонкий кишечник.

В ротовой полости всасываются некоторые лекарственные вещества. В желудке всасываются вода, минеральные соли, моносахара, алкоголь, лекарственные вещества, гормоны, альбумозы, пептоны. В двенадцатиперстной кишке также осуществляется всасывание воды, минеральных веществ, гормонов и продуктов расщепления белка.

Основной процесс всасывания происходит в тонком кишечнике. Углеводы всасываются в кровь в виде глюкозы и отчасти в виде других моносахаров (галактоза, фруктоза). Белки всасываются в кровь в виде аминокислот и простых пептидов. Нейтральные жиры расщепляются ферментами до глицерина и жирных кислот. Жиры поступают главным образом в лимфу и только небольшая часть (30%) — в кровь. Вода, минеральные соли, витамины всасываются в кровь на всем протяжении тонкого кишечника. В толстом кишечнике также происходит всасывание воды и минеральных солей.

Структурные и функциональные особенности тонкого кишечника, обеспечивающие его всасывательную активность. В слизистой оболочке тонкого кишечника обнаруживаются многочисленные круговые складки (складки Керкринга), огромное количество ворсинок и микроворсинок.

В центре каждой ворсинки имеется лимфатический сосуд (млечное пространство или синус ворсинки).

При отсутствии пищи в кишечнике ворсинки малоподвижны. Во время пищеварения ворсинки ритмически сокращаются, что облегчает всасывание питательных веществ.

Механизм всасывания. В обеспечении всасывания большую роль играют физические процессы — диффузия, фильтрация, осмос.

Эпителий кишечника обладает односторонней всасывательной способностью. Всасывание различных веществ осуществляется только из кишечника в кровь или лимфу независимо от их концентрации по обе стороны мембраны.

41. Обмен белков, его регуляция

Регулируется белковый обмен центральной нервной системой и гуморальными веществами.

В гипоталамической области промежуточного мозга находятся специальные центры, регулирующие белковый обмен. На белковый обмен оказывает влияние и кора больших полушарий. Из желез внутренней секреции в регуляции участвуют щитовидная железа, надпочечники, гипофиз.

При гиперфункции щитовидной железы повышается обмен белков, мышцы теряют азотистое вещество — креатин, который переходит в мочу. При этом может наступить отрицательный азотистый баланс.

Гипофункция сопровождается явлениями обратного порядка, замедляется обмен веществ, останавливается рост и развитие организма.

Под влиянием гормонов корковой части надпочечников (дезоксикортикостероиды, альдостерон) в печени и почках усиливается дезаминирование, при этом большое количество азота выделяется с мочой.

Глюкокортикоиды — ускоряют распад белков и аминокислот, в результате чего усиливается выделение азота из организма. Недостаток этих гормонов вызывает обратный процесс. Гормон роста стимулирует синтез белков в мышцах и печени. Он следит за экономным расходованием белков за счет распада жира.

Большая роль в регуляции белкового обмена принадлежит печени и почкам.

В печени происходит не только синтез белка, но и обеззараживание продуктов их гниения. В почках совершается дезаминирование продуктов азотистого обмена.

43. Обмен углеводов, его регуляция

Углеводы в организме имеют значение энергетического материала. Их роль в энергетике организма обусловлена быстротой распада углеводов и окисления, и тем, что они быстро извлекаются из депо и могут быть использованы, когда организм нуждается в дополнительной энергии. Различают простые и сложные углеводы.

Сложные — это полисахариды, состоящие из большого количества молекул простых углеводов.

Кроме энергетической функции, которая является основной, углеводы выполняют другие многообразные функции, такие как:

― соединяясь с белками и липидами образуют структурные компоненты клеток и их оболочек;

― рибоза и дезоксирибоза играют важную роль в качестве составных частей ДНК и РНК и др.

В регуляции постоянства концентрации сахара в крови главную роль выполняет печень. При избыточном поступлении углеводов в организм в печени происходит накопление гликогена, а при недостаточном поступлении, наоборот, гликоген, в ней распадается до глюкозы. Таким образом поддерживается нормальное количество сахара.

Постоянство содержания глюкозы в крови, гликогена в печени регулируется нервной системой. На обмен углеводов оказывает влияние кора больших полушарий головного мозга. Доказательством этого является повышение сахара в моче у студентов после трудного экзамена. Центр углеводного обмена находится в гипотоламусе и продолговатом мозге.

Влияние гипоталамуса и коры больших полушарий на углеводный обмен осуществляется преимущественно посредством симпатической нервной системы, которая вызывает усиленную секрецию адреналина надпочечниками.

Большое значение в углеводном обмене имеют железы внутренней секреции — поджелудочная, щитовидная, надпочечники, гипофиз и др., которые под действием ЦНС регулируют ассимиляцию и диссимиляцию углеводов.

44. Обмен жиров, его регуляция

Физиологическая роль липидов в организме заключается в том, что они входят в состав клеточных структур (пластическое значение липидов) и они используются как богатые источники энергии (энергетическое значение липидов).

Липиды составляют в среднем 10–20 % массы тела животных. В основном это триглицериды, содержащие преимущественно насыщенные и ненасыщенные жирные кислоты. У свиней при сальном откорме, у валухов или волов содержание липидов возрастает до 35–50 %, а у курдючных овец масса жира иногда превышает 50 % живой массы.

Жиры играют важную роль в регуляции теплового баланса. Плохо проводя тепло, жировой слой ограничивает теплоотдачу. Эластичная жировая ткань в качестве своеобразной подкладки для ряда внутренних органов (почки, сердце) способствует фиксации их в полости тела и служит для защиты от механических воздействий.

К жироподобным веществам относятся фосфатиды, стерины, воски и др. вещества. Основным их представителем является ацетилхолин, которого много в нервных тканях. Синтез фосфатидов происходит из нейтральных жиров, фосфорной кислоты и азотистого основания — холина.

Обмен липидов, так же как и других веществ, регулируется центральной нервной системой. Центр липидного обмена находится в промежуточном мозге. Регуляция осуществляется как через симпатическую и парасимпатическую систему, так и через железы внутренней секреции. Симпатическая нервная система способствует мобилизации жира. При ее возбуждении возможна убыль жира из жировой ткани и наоборот, слабая возбудимость симпатической нервной системы способствует понижению расщепления жира и приводит к ожирению.

К железам внутренней секреции, через которые нервная система влияет на обмен, относят гипофиз, щитовидную, поджелудочную, половые железы и др

45. Значение макро-и микроэлементов для организма. Регуляция минерального обмена.

МАКРОЭЛЕМЕНТЫ

химические элементы или их соединения, используемые организмами в сравнительно больших количествах: кислород, водород, углерод, азот, железо, фосфор, калий, кальций, сера, магний, натрий, хлор и др. Макроэлементы участвуют в построении органических соединений и неорганических веществ живых организмов, составляя основную массу сухого вещества последних. Большей частью макроэлементы поступают в клетку извне или представлены в ней ионами как результат диссоциации соответствующих солей.

Микроэлементы

Микроэлементы, химические элементы, присутствующие в организмах в низких концентрациях (обычно тысячные доли процента и ниже.

В организме М. входят в состав разнообразных биологически активных соединений: ферментов (например, Zn — в карбоангидразу, Cu — в полифенолоксидазу, Mn — в аргиназу, Mo — в ксантиноксидазу; всего известно около 200 металлоферментов), витаминов (Со — в состав витамина B12), гормонов (I — в тироксин, Zn и Со — в инсулин), дыхательных пигментов (Fe — в гемоглобин и другие железосодержащие пигменты, Cu — в гемоцианин). Действие М., входящих в состав указанных соединений или влияющих на их функции, проявляется главным образом в изменении активности процессов обмена веществ в организмах. Некоторые М. влияют на рост (Mn, Zn, I — у животных; В, Mn, Zn, Cu — у растений), размножение (Mn, Zn — у животных; Mn, Cu, Mo — у растений), кроветворение (Fe, Cu, Со), на процессы тканевого дыхания (Cu, Zn), внутриклеточного обмена и т. д. Для ряда обнаруженных в организмах М. (Sc, Zr, Nb, Au, La и др.) неизвестно их количественное распределение в тканях и органах и не выяснена биологическая роль.

Функции каждого минерального вещества или группы минеральных веществ в организме специфичны, что обусловливает многообразие механизмов регуляции М. о. Водно-солевой обмен, тесно связанный с обменом натрия, хлора и калия, регулируется гормонами минераглюкортикоидами (см. Кортикостероиды), вазопрессином, ренин-ангиотензинной системой и альдостероном (см. Гиперальдостеронизм). Фосфорно-кальциевый обмен регулируется паратгормоном (см. Паращитовидные железы), витамином D (см. Витамины) и кальцитонином (см. Щитовидная железа). Паратгормон и витамин D способствуют повышению концентрации ионов Са2+в крови и тканях. Так, паратгормон стимулирует резорбцию костной ткани с выходом освободившихся ионов Са2+ в кровь. В почках под его действием повышается обратное всасывание (реабсорбция) ионов Са2+, а реабсорбция фосфора понижается, т. о. под влиянием паратгормона выведение кальция с мочой уменьшается, а фосфора - увеличивается Витамин D регулирует также обратное всасывание фосфора и кальция в почечных канальцах.

Большое значение в регуляции минерального обмена играют гормоны щитовидной железы.

 

46. Температура тела и ее регуляция

 

У человека нормальное функционирование организма связано с поддержанием постоянной температуры тела. В организме имеются дополнительные механизмы, регулирующие интенсивность метаболических процессов и скорость обмена тепла тела и его окружения, чтобы поддерживать температуру в узком диапазоне, несмотря на значительные колебания температуры окружающей среды.

Информацию о внешней температуре поставляют терморецепторы кожи (а также, видимо, других органон, например, мышц). Внутреннюю температуру тела отслеживают центральные терморецептивные нейроны переднего гипоталамуса, реагирующие на температуру крови. Это сервомеханизм (система, управляющая другой системой с помощью отрицательной обратной связи), для которого заданным значением (контрольной точкой) служит нормальная температура тела. В ответ на сигналы ошибки (рассогласования) возникают реакции, направленные на возвращение температуры тела к контрольной точке. Эти реакции опосредуются автономной системой, соматической системой и эндокринной системой.

Температура тела повышается при физических нагрузках и меняется при экстремальных вариациях температуры окружающей среды, т.к. регуляторные механизмы не абсолютно совершенны. Так, в связи с чрезвычайными физическими усилиями, когда продуцируется избыток тепла, температура тела временно может повышаться до 38,5-40,5°С. Напротив, когда организм подвергается действию чрезвычайного холода, температура часто может снижаться до 36°С и даже ниже. На уровне 36,6°С температура тела у человека поддерживается с очень большой точностью, до десятых долей градуса

При охлаждении организма возникает дрожь - асинхронные мышечные сокращения, увеличивающие теплопродукцию. Повышается активность щитовидной железы и симпатической нервной системы, что усиливает метаболические процессы теплообразования. \


52. Внутрисекреторная функция поджелудочной железы

Внутрисекреторная функция поджелудочной железы заключается в выработке инсулина, липокаина и глюкагона. Инсулин принимает активное участие в регуляции уг­леводного обмена, глюкагон считают антиподом инсулина, а липокаин предотвращает жировую инфильтрацию подже­лудочной железы и печени.
Регуляция секреции поджелудочной железы осуществляется комплексом нейрогуморальных механизмов.
Различают три фазы секреции: главное, желудочную и кишечную. Во время главной фазы секреции основная роль принадлежит нервным влияниям, которые реализуются через блуждающий нерв при условно и безумовнорефлекторних реакций. Под влиянием вида, запаха пищи, ее поступления в ротовую полость рефлекторно выделяется сок поджелудочной железы. Секреция начинается уже через 1-2 мин после начала приема пищи. В это время выделяется умеренное количество ферментов. Сок содержит незначительное количество воды и электролитов. Симпатические нервы осуществляют трофическое влияние на поджелудочную железу. их импульсы усиливают синтез органических веществ, в то же время подавляя их выделения. Поэтому эмоции и другие состояния, в результате которых возбуждается симпатический отдел вегетативной нервной системы, тормозят выделение сока.

При желудочной фазы нервные влияния сохраняются, но начинают действовать гуморальные факторы, в частности желудочный гастрин.
Кишечная фаза характеризуется четкой зависимостью количества сока и его состав от состава химуса.

При приеме пищи с различным содержанием белков, жиров и углеводов
изменяются количество и состав сока. Таким образом поджелудочная железа приспосабливается к различным условиям, то есть происходит ее адаптация.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: