СПОСОБЫ ПОЛУЧЕНИЯ АМИНОКИСЛОТ





1) Восстановление нитрозамещенных карбоновых кислот (применяется обычно для получения ароматических аминокислот):

O2N-C6H4 -COOH + 3H2 → H2N-C6H4 -COOH + 2H2O

2) Гидролизом белков можно получить около 25 аминокислот, но полученную смесь трудно разделить. Обычно одна или две кислоты получаются в значительно больших количествах, чем остальные, и эти кислоты удается выделить довольно легко - с помощью ионообменных смол.

Химические свойства аминокислот как амфотерных органических соединений.

Аминокислоты - амфотерные вещества, которые могут существовать в виде катионов или анионов. Это свойство объясняется наличием как кислотной (-СООН), так и основной (-NH2) группы в одной и той же молекуле. В очень кислых растворах NH2-группа кислоты протонируется и кислота становится катионом. В сильнощелочных растворах карбоксильная группа аминокислоты депротонируется и кислота превращается в анион.

Подобно аминам, они реагируют с кислотами с образованием солей аммония:

H2N–CH2 –COOH + HCl → Cl- [H3N–CH2 –COOH]+

При взаимодействии с щелочами аминокислоты реагируют по карбоксильной группе.

Как карбоновые кислоты они образуют функциональные производные:

а) соли : H2N–CH2 –COOH + NaOH → H2N–CH2 –COO- Na+ + H2O

б) сложные эфиры(реакция этерификации):

NH2CH2COOH + CH3OH → H2O + NH2CH2 COOCH3 (метиловый эфир глицина)

При взаимодействии друг с другом аминокислоты образуют пептидную связь (существует в белке):

HOOCCH2NHH + HOOCCH2NH2 → HOOC -CH2 -NH -CO -CH2 NH2 + H2O

При взаимодействии двух a-аминокислот образуется дипептид. Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH - пептидной связью.

Применение аминокислот.

Аминокислоты широко используются в современной фармакологии. Являясь не только структурными элементами белков и других эндогенных соединений, они имеют большое функциональное значение. Некоторые из них выступают в качестве нейромедиаторных веществ. Некоторые аминокислоты нашли самостоятельное применение в качестве лекарственных средств.

Белки. Получение белков реакцией поликонденсации аминокислот.

Аминокислоты способны к поликонденсации, в результате которой образуется полиамид. Полиамиды, состоящие из -аминокислот, называются пептидами или полипептидами. Амидная связь в таких полимерах называется пептидной связью. Полипептиды с молекулярной массой не меньше 5000 называют белками.

Первичная, вторичная и третичная структуры белков.

Уникальная последовательность аминокислотных остатков в цепи, присущая данному белку, называется первичной структурой белка.

Фрагмент полипептидной цепи:

… - N – CH – C – N – CH – C – N – CH –C – N – CH – C - …

׀ ׀ ׀ ׀ ׀ ׀ ׀ ׀

H R O H R1 O H R2 O H R3 O

Один из первых белков, первичная структура которого была установлена в 1954 г., - гормон инсулин (регулирует содержание сахара в крови), его молекула состоит из двух полипептидных цепей, которые связаны друг с другом (в одной цепи 21 аминокислотный остаток, в другой – 30), Mr (инсулина)=5700. Другой белок – фермент рибонуклеаза – состоит из 124 аминокислотных остатков и имеет Mr=15000.

Белок крови – гемоглобин имеет Mr = 68000. Белки некоторыхвирусов имеют Mr до 50 млн. Относительная молекулярная масса белков изменяется в широких пределах: от 5 тыс. до десятков миллионов.

Особенности скручивания цепей белковых молекул (взаимное расположение фрагментов в пространстве) называются вторичной структурой белков.

Полипептидные цепи белков могут соединяться между собой с образованием амидных, дисульфидных, водородных и иных связей за счет боковых цепей аминокислот. В результате этого происходит закручивание спирали в клубок. Эта особенность строения называется третичной структурой белка. Для проявления биологической активности некоторые белки должны сначала образовать макрокомплекс (олигопротеин), состоящий из нескольких полноценных белковых субъединиц. Четвертичная структураопределяет степень ассоциации таких мономеров в биологически активном материале.

Белки делятся на две большие группы - фибриллярные (отношение длины молекулы к ширине больше 10) и глобулярные(отношение меньше 10). К фибриллярным белкам относится коллаген, наиболее распространенный белок позвоночных; на его долю приходится почти 50% сухого веса хрящей и около 30% твердого вещества кости. В большинстве регуляторных систем растений и животных катализ осуществляется глобулярными белками, которые носят название ферментов.

Химические свойства

Денатурация – разрушение вторичной, третичной структуры белка под действием различных факторов: температура, действие кислот, солей тяжёлых металлов, спиртов и т.д.

При денатурации под влиянием внешних факторов (температуры, механического воздействия, действия химических агентов и других факторов) происходит изменение вторичной, третичной и четвертичной структур белковой макромолекулы.

Первичная структура, а, следовательно, и химический состав белка не меняются. Изменяются физические свойства: снижается растворимость, способность к гидратации, теряется биологическая активность. Меняется форма белковой макромолекулы, происходит агрегирование. В то же время увеличивается активность некоторых групп, облегчается воздействие на белки протеолитических ферментов, а, следовательно, он легче гидролизуется.

В пищевой технологии особое практическое значение имеет тепловая денатурация белков, степень которой зависит от температуры, продолжительности нагрева и влажности. Это необходимо помнить при разработке режимов термообработке пищевого сырья, полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы тепловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хлеба, получении макаронных изделий. Денатурация белков может вызываться и механическим воздействием (давлением, растиранием, встряхиванием, ультразвуком). К денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти приемы широко используют в пищевой и биотехнологии.

Качественные реакции на белки:

а) При горении белка – запах палёных перьев.

б) ксантопротеиновая реакция (на остатки аминокислот, содержащих бензольные кольца):

Белок +HNO3жёлтая окраска

в) биуретовая реакция, (на пептидные связи)

Раствор белка +NaOH + CuSO4фиолетовая окраска

Гидролиз

Белок + Н2О → смесь аминокислот

г) ) цистеиновая реакция (на остатки аминокислот, содержащих серу):

белок + NaOH + Pb (CH3COO)2 → чёрное окрашивание.

 

Гидратация

Процесс гидратации означает связывание белками воды, при этом они проявляют гидрофильные свойства: набухают, их масса и объем увеличивается.

Биохимические функции белков. Функции белков в природе:

· каталитические (ферменты);

· регуляторные (гормоны);

· структурные (кератин шерсти, фиброин шелка, коллаген);

· двигательные (актин, миозин);

· транспортные (гемоглобин);

· запасные (казеин, яичный альбумин);

· защитные (иммуноглобулины) и т.д.

 

Существуют белки, выполняющие специфические функции, например рецепторные, - обеспечивают передачу импульсов между нервными клетками и др.

Белки – необходимая составная часть пищи человека, отсутствие или недостаток их в пище может вызвать серьёзные заболевания.

Генетическая связь между органическими соединениями.

Генетическая связь ( от греч. «генезис» - происхождение).

Генетические связи - это связи между классами соединений, основанные на получении одного класса веществ с другого.

Генетическая связь отражает возможность взаимных превращений.

Правило генетических связей:

1) количество стрелок в схеме соответствует количеству уравнений химических реакций, которые необходимо сложить;

2) соединения, записанные перед стрелочкой обязательно должны вступить в химическую реакцию;

3) соединения, записанные после стрелочки должны образоваться в результате реакции.

Имея правила генетических связей давайте вместе совершим такое преобразование: С→СО2 → Н2СО3→СаСО3

Поэтому для неметаллов схема будет иметь такой вид:

Неметалл→ Кислотный оксид→ Кислота→Соль.


Изучая углеводороды, мы убедились в их разнообразии, которая обусловлена способностью атомов Углерода образовывать молекулы линейного, разветвленного, циклического строения; сочетаться между собой с помощью простых и кратных связей. А еще - образовывать гомологические ряды и изомеры.

Сравнив общие формулы алканов, алкенов и алкинов, можно заметить, что они отличаются количеством атомов Водорода в молекулах. Итак, реакциями гидрирования и дегидрирования можно переходить от одного класса углеводородов к другому. Существует также связь между насыщенными, ненасыщенными углеводородами и бензолом. Так, из метана реакцией дегидрирования можно получить ацетилен. А с него реакцией тримеризации добыть бензол:

2CH4 → C2H2 + 3H2;

3C2H2 → C6H6

Итак, при всем разнообразии углеводородов между ними существует взаимосвязь, что отражается во взаимных превращениях веществ. Это открывает огромные возможности для химического синтеза.
Вещественный мир природы чрезвычайно разнообразен, и вместе с тем все вещества взаимосвязаны. Генетическая связь между органическими и неорганическими веществами заключается, прежде всего, в том, что органические вещества можно добыть из неорганических. Например, при нагревании

неорганического вещества цианата аммония образуются органическое вещество мочевина (NH2)2CO:

Ярким доказательством существования генетической связи между органическими и неорганическими веществами являются также круговорот биогенных элементов в природе. Следовательно, все вещества генетически связаны между собой. Генетическая связь заключается в том, что каждое вещество может химически взаимодействовать с веществами других классов. Органические вещества могут взаимодействовать с неорганическими. Их можно синтезировать из неорганических и превращать в неорганические.

В органической химии также следует различать более общее понятие — генетическая связь и более частное понятие генетический ряд. Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одикиконым числом атомов углерода в молекуле. Рассмотрим генетический ряд органических веществ, в который включим наибольшее число классов соединений:

Каждой цифре над стрелкой соответствует определенное уравнение реакции (уравнение обратной реакции обозначено цифрой со штрихом):

Контроль знаний:

1.Дать определение амидной связи.

2. Дать характеристику структурам белка, составу аминокислот.

3.Какие элементы входят состав белка?

4.Опишите физические и химические свойства белков.

5.Какие вещества образуются при гидролизе белков?

6.Укажите число возможных изомерных аминов, имеющих молекулярную формулу СзН9N: а) два; б) три; в) четыре; г) пять.

 

ДОМАШНЕЕ ЗАДАНИЕ:

Проработать: Л1. Стр.169-173, Л1. Стр.174-177,178-183,пересказ конспекта лекции №14.

Лекция № 16.

Полимеры. Пластмассы: термопласты и реактопласты, их представители и применение. Волокна: природные (растительные и животные) и химические (искусственные и синтетические). Искусственные полимеры. Получение искусственных полимеров, как продуктов химической модификации природного полимерного сырья. Искусственные волокна (ацетатный шелк, вискоза), их свойства и применение

Основные понятия и термины по теме: полимеры и их классификация, искусственные и синтетические полимеры, волокна: ацетатный шёлк, вискоза, лавсан, нитрон, капрон, полипропилен, поливинилхлорид.

План изучения темы

(перечень вопросов, обязательных к изучению):

 

1. Полимеры и их классификация. Пластмассы и волокна: их характеристика.

2. Искусственные полимеры. Их характеристика.Искусственные волокна (ацетатный шелк, вискоза), их свойства и применение.

3. Каучуки. Натуральные и синтетические. Их характеристика.

 

Содержание лекции:





Читайте также:
Методы лингвистического анализа: Как всякая наука, лингвистика имеет свои методы...
Термины по теме «Социальная сфера»: Общество — сумма связей, система отношений, возникающая...
Новые русские слова в современном русском языке и их значения: Менсплейнинг – это когда мужчина что-то объясняет...
Восстановление элементов благоустройства после завершения земляных работ: Края асфальтового покрытия перед его восстановлением должны...

Рекомендуемые страницы:



Вам нужно быстро и легко написать вашу работу? Тогда вам сюда...

Поиск по сайту

©2015-2022 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:


Мы поможем в написании ваших работ!
Обратная связь
0.019 с.