ФУНКЦИИ ЗРИТЕЛЬНОГО АНАЛИЗАТОРА И МЕТОДИКА ИХ ИССЛЕДОВАНИЯ




 

Зрительный анализатор человека является сложной нервно-рецепторной системой, предназначенной для восприятия и анализа световых раздражений. Согласно И. П. Павлову, в нем, как и в любом анализаторе, имеются три основных отдела — рецепторный, проводниковый и корковый. В периферических рецепторах — сетчатке глаза происходят восприятие света и первичный анализ зрительных ощущений. Проводниковый отдел включает зрительные пути и глазодвигательные нервы. В корковый отдел анализатора, расположенный в области шпорной борозды затылочной доли мозга, поступают импульсы как от фоторецепторов сетчатки, так и от про-приорецепторов наружных мышц глазного яблока, а также мышц, заложенных в радужной оболочке и цилиарном теле. Кроме того, имеются тесные ассоциативные связи с другими анализаторными системами.

Источником деятельности зрительного анализатора является превращение световой энергии в нервный процесс, возникающий в органе чувств. По классическому определению В. И. Ленина, «... ощущение есть действительно непосредственная связь сознания с внешним миром, есть превращение энергии внешнего раздражения в факт сознания. Это превращение каждый человек миллионы раз наблюдал и наблюдает действительно на каждом шагу».

Адекватным раздражителем для органа зрения служит энергия светового излучения. Человеческий глаз воспринимает свет с длиной волны от 380 до 760 нм. Однако в специально созданных условиях этот диапазон заметно расширяется в сторону инфракрасной части спектра до 950 нм и в сторону ультрафиолетовой части — до 290 нм.

Такой диапазон световой чувствительности глаза обусловлен формированием его фоторецепторов приспособительно к солнечному спектру. Земная атмосфера на уровне моря полностью поглощает ультрафиолетовые лучи с длиной волны менее 290 нм, часть ультрафиолетового излучения (до 360 нм) задерживается роговицей и особенно хрусталиком.

Ограничение восприятия длинноволнового инфракрасного излучения связано с тем, что внутренние оболочки глаза сами излучают энергию, сосредоточенную в инфракрасной части спектра. Чувствительность глаза к этим лучам привела бы к снижению четкости изображения предметов на сетчатке за счет освещения полости глаза светом, исходящим из его оболочек.

Зрительный акт является сложным нейрофизиологическим процессом, многие детали которого еще не выяснены. Он состоит из 4 основных этапов.

1.С помощью оптических сред глаза (роговица, хрусталик) на фоторецепторах сетчатки образуется действительное, но инвертированное (перевернутое) изображение предметоввнешнего мира.

2. Под воздействием световой эвергии в фоторецепторах (колбочки, палочки) происходит сложный фотохимический процесс, приводящий к распаду зрительных пигментов с последующей их регенерацией при участии витамина А и других веществ. Этот фотохимический процесс способствует трансформации световой энергии в нервные импульсы. Правда, до сих пор неясно, каким образом зрительный пурпур участвует в возбуждении фоторецепторов.

Светлые, темные и цветные детали изображения предметов по-разному возбуждают фоторецепторы сетчатки и позволяют воспринимать свет, цвет, форму и пространственные отношения предметов внешнего мира.

3. Импульсы, возникшие в фоторецепторах, проводятся по нервным волокнам к зрительным центрам коры головного мозга.

4. В корковых центрах происходит превращение энергии нервного импульса в зрительное ощущение и восприятие. Но каким образом происходит это преобразование, до сих пор неизвестно.

Таким образом, глаз является дистантным рецептором, дающим обширную информацию о внешнем мире без непосредственного контакта с его предметами. Тесная связь с другими анализаторными системами позволяет с помощью зрения на расстоянии получить представление о свойствах предмета, которые могут быть восприняты только другими рецепторами — вкусовыми, обонятельными, тактильными. Так, вид лимона и сахара создает представление о кислом и сладком, вид цветка — о его запахе, снега и огня — о температуре и т. п. Сочетанная и взаимная связь различных рецепторных систем в единую совокупность создается в процессе индивидуального развития.

Дистантный характер зрительных ощущений оказывал существенное влияние на процесс естественного отбора, облегчая добывание пищи, своевременно сигнализируя об опасности и способствуя свободной ориентации в окружающей обстановке. В процессе эволюции шло совершенствование зрительных функций, и они стали важнейшим источником информации о внешнем мире.

Основой всех зрительных функций является световая чувствительность глаза. Функциональная способность сетчатки неравноценна на всем ее протяжении. Наиболее высока она в области желтого пятна и особенно в центральной ямке. Здесь сетчатка представлена только нейроэпителием и состоит исключительно из высокодифференцированных колбочек. При рассматривании любого предмета глаз устанавливается таким образом, что изображение предмета всегда проецируется на область центральной ямки. На остальной части сетчатки преобладают менее дифференцированные фоторецепторы — палочки, и чем дальше от центра проецируется изображение предмета, тем менее отчетливо оно воспринимается.

В связи с тем, что сетчатка животных, ведущих ночной образ жизни, состоит преимущественно из палочек, а дневных животных — из колбочек, Шульце в 1868 г. высказал предположение о двойственной природе зрения, согласно которому дневное зрение осуществляется колбочками, а ночное — палочками. Палочковый аппарат обладает высокой светочувствительностью, но не способен передавать ощущение цветности; колбочки обеспечивают цветное зрение, но значительно менее чувствительны к слабому свету и функционируют только при хорошем освещении.

В зависимости от степени освещенности можно выделить три разновидности функциональной способности глаза.

1. Дневное (фотопическое) зрение (от греч. photos — свет и opsis — зрение) существляется колбочковым аппаратом глаза при большой интенсивности освещения. Оно характеризуется высокой остротой зрения и хорошим восприятием цвета.

2. Сумеречное (мезопическое) зрение (от греч. mesos — средний, промежуточный) осуществляется палочковым аппаратом глаза при слабой степени освещенности (0,1—0,3лк). Оно характеризуется низкой остротой зрения и ахроматичным восприятием предметов. Отсутствие цветовосприятия при слабом освещении хорошо отражено в пословице «ночью все кошки серы».

3. Ночное (скотопическое) зрение (от греч. skotos — темнота) также осуществляется палочками при пороговой и надпороговой освещенности. Оно сводится только к ощущению света.

Таким образом, двойственная природа зрения требует дифференцированного подхода к оценке зрительных функций. Следует различать центральное и периферическое зрение.

Центральное зрение осуществляется колбочковым аппаратом сетчатки. Оно характеризуется высокой остротой зрения и восприятием цвета. Другой важной чертой центрального зрения является визуальное восприятие формы предмета. В осуществлении форменного зрения решающее значение принадлежит корковому отделу зрительного анализатора. Так, среди рядов точек человеческий глаз легко формирует их в виде треугольников, наклонных линий за счет именно корковых ассоциаций (рис. 46).

 

Рис. 46. Графическая модель, демонстрирующая участие коркового отдела зрительного анализатора в восприятии формы предмета.

 

Значение коры головного мозга в осуществлении форменного зрения подтверждают случаи потери способности распознавать форму предметов, наблюдаемые иногда при повреждении затылочных областей мозга.

Периферическое палочковое зрение служит для ориентации в пространстве и обеспечивает ночное и сумеречное зрение.

ЦЕНТРАЛЬНОЕ ЗРЕНИЕ

Острота зрения

Для распознавания предметов внешнего мира необходимо не только выделить их по яркости или цвету на окружающем фоне, но и различить в них отдельные детали. Чем мельче детали может воспринимать глаз, тем выше его острота зрения (visus). Под остротой зрения принято понимать способность глаза воспринимать раздельно точки, расположенные друг от друга на минимальном расстоянии.

При рассматривании темных точек на светлом фоне их изображения на сетчатке вызывают возбуждение фоторецепторов, количественно отличающееся от возбуждения, вызываемого окружающим фоном. В связи с этим становится различимым светлый промежуток между точками и они воспринимаются как раздельные. Величина промежутка между изображениями точек на сетчатке зависит как от расстояния между ними на экране, так и от удаленности их от глаза. В этом легко убедиться, отдаляя книгу от глаз. Вначале исчезают наиболее мелкие промежутки между деталями букв и последние становятся неразборчивыми, затем исчезают промежутки между словами и строка видится в виде линии, и, наконец, происходит слияние строк в общий фон.

Взаимосвязь между величиной рассматриваемого объекта и удаленностью последнего от глаза характеризует угол, под которым виден объект. Угол, образованный крайними точками рассматриваемого объекта и узловой точкой глаза, называется углом зрения. Острота зрения обратно пропорциональна углу зрения: чем меньше угол зрения, тем выше острота зрения. Минимальный угол зрения, позволяющий раздельно воспринимать две точки, характеризует остроту зрения исследуемого глаза.

Определение минимального угла зрения для нормального глаза человека имеет уже трехсотлетнюю историю. Еще в 1674 г. Гук с помощью телескопа установил, что минимальное расстояние между звездами, доступное для их раздельного восприятия невооруженным глазом, равно 1 угловой минуте. Через 200 лет, в 1862 г., Снеллен использовал эту величину при построении таблиц для определения остроты зрения, приняв угол зрения в 1 мин. за физиологическую норму. Только в 1909 г. на Интернациональном конгрессе офтальмологов в Неаполе угол зрения 1 мин был окончательно утвержден в качестве международного эталона для определения нормальной остроты зрения, равной единице. Однако эта величина не предельная, а скорее характеризующая нижнюю границу нормы. Встречаются люди с остротой зрения 1,5; 2,0; 3,0 и более единиц. Гумбольт описал жителя Бреслау с остротой зрения 60 единиц, который невооруженным глазом различал спутники Юпитера, видимые с земли под углом зрения 1 с.

Предел различительной способности глаза во многом обусловлен анатомическими размерами фоторецепторов желтого пятна. Так, угол зрения 1 мин соответствует на сетчатке линейной величине 0,004 мм, что, например, равно диаметру одной колбочки. При меньшем расстоянии изображение падает на одну или две соседние колбочки и точки воспринимаются слитно. Раздельное восприятие точек возможно только в том случае, если между двумя возбужденными колбочками находится одна интактная.

В связи с неравномерным распределением колбочек в сетчатке различные ее участки неравноценны по остроте зрения. Наиболее высокая острота зрения в области центральной ямки желтого пятна, а по мере удаления от нее быстро падает. Уже на расстоянии 10° от центральной ямки она равна всего 0,2 и еще более снижается к периферии, поэтому правильнее говорить не об остроте зрения вообще, а об остроте центрального зрения.

Острота центрального зрения меняется в различные периоды жизненного цикла. Так, у новорожденных она очень низка. Форменное зрение появляется у детей после установления устойчивой центральной фиксации. В 4-месячном возрасте острота зрения несколько меньше 0,01 и к году постепенно достигает 0,1. Нормальной острота зрения становится к 5—15 годам. В процессе старения организма происходит постепенное падение остроты зрения. По данным Лукиша, если принять за 100% остроту зрения в 20-летнем возрасте, то в 40 лет она снижается до 90%, в 60 лет — до 74% и к 80 годам — до 42 %.

Для исследования остроты зрения применяются таблицы, содержащие несколько рядов специально подобранных знаков, которые называются оптотипами. В качестве оптотипов используются буквы, цифры, крючки, полосы, рисунки и т. п. Еще Снеллен в 1862 г. предложил вычерчивать оптотипы таким образом, чтобы весь знак был виден под углом зрения 5 мин, а его детали — под углом 1 мин. Под деталью знака понимается как толщина линий, составляющих оптотип, так и промежуток между этими линиями. Из рис. 47 видно, что все линии, составляющие оптотип Е, и промежутки между ними ровно в 5 раз меньше размеров самой буквы.


 

Рис.47. Принцип построения оптотипа Снеллена

 

С целью исключить элемент угадывания буквы, сделать все знаки в таблице идентичными по узнаваемости и одинаково удобными для исследования грамотных и неграмотных людей разных национальностей Ландольт предложил использовать в качестве оптотипа незамкнутые кольца разной величины. С заданного расстояния весь оптотип также виден под углом зрения 5 мин, а толщина кольца, равная величине разрыва,— под углом в 1 мин (рис. 48). Исследуемый должен определить, с какой стороны кольца расположен разрыв.


 

Рис.48. Принцип построения оптотипа Ландольта

 

В 1909 г. на XI Международном конгрессе офтальмологов кольца Ландольта были приняты в качестве интернационального оптотипа. Они входят в большинство таблиц, получивших практическое применение.

В Советском Союзе наиболее распространены таблицы С. С. Головина и Д. А. Сивцева, в которые наряду с таблицей,составленной из колец Ландольта, входит таблица с буквенными оптотипами (рис. 49).

 

 

В этих таблицах впервые буквы были подобраны не случайно, а на основании углубленного изучения степени их узнаваемости большим числом людей с нормальным зрением. Это, естественно, повысило достоверность определения остроты зрения. Каждая таблица состоит из нескольких (обычно 10—12) рядов оптотипов. В каждом ряду размеры оптотипов одинаковы, но посте­пенно уменьшаются от первого ряда к последнему. Таблицы рассчитаны для исследования остроты зрения с расстояния 5 м. На этом расстоянии детали оптотипов 10-го ряда видны под углом зрения 1 мин. Следовательно, острота зрения глаза, различающего оптотипы этого ряда, будет равна единице. Если острота зрения иная, то определяют, в каком ряду таблицы исследуемый различает знаки. При этом остроту зрения высчитывают по формуле Снеллена: visus = —, где d — расстояние, с кото­рого проводится исследование, a D — расстояние, с которого нормальный глаз различает знаки этого ряда (проставлено в каждом ряду слева от оптотипов).

Например, исследуемый с расстояния 5 м читает 1-й ряд. Нормальный глаз различает знаки этого ряда с 50 м. Следовательно, vi-5м sus= =0,1.

Изменение величины оптотипов выполнено в арифметической прогрессии в десятичной системе так, что при исследовании с 5 м чтение каждой последующей строки сверху вниз свидетельствует об увеличении остроты зрения на одну десятую: верхняя строка — 0,1, вторая — 0,2 и т. д. до 10-й строки, которая соответствует единице. Этот принцип нарушен только в двух последних строках, так как чтение 11-й строки соответствует остроте зрения 1,5, а 12-й — 2 единицам.

Иногда значение остроты зрения выражается в простых дробях, например 5/5о, 5/25, где числитель соответствует расстоянию, с которого проводилось исследование, а знаменатель — расстоянию, с которого видит оптотипы этого ряда нормальный глаз. В англо-американской литературе расстояние обозначается в футах, и исследование обычно проводится с расстояния 20 футов, в связи с чем обозначения vis = 20/4o соответствуют vis = 0,5 и т. п.

Острота зрения, соответствующая чтению данной строки с расстояния 5 м, проставлена в таблицах в конце каждого ряда, т. е. справа от оптотипов. Если исследование проводится с меньшего расстояния, то пользуясь формулой Снеллена, нетрудно рассчитать остроту зрения для каждого ряда таблицы.

Для исследования остроты зрения у детей дошкольного возраста используются таблицы, где оптотипами служат рисунки (рис. 50).

 

 

Рис. 50. Таблицы для определения остроты зрения у детей.

 

В последнее время для ускорения процесса исследования остроты зрения выпускаются телеуправляемые проекторы оптотипов, что позволяет врачу, не отходя от исследуемого, демонстрировать на экране любые комбинации оптотипов. Такие проекторы (рис. 51) обычно комплектуются с другими аппаратами для исследования глаза.

 


 

Рис. 51. Комбайн для исследования функций глаза.

 

Если острота зрения исследуемого меньше 0,1, то определяют расстояние, с которого он различает оптотипы 1-го ряда. Для этого исследуемого постепенно подводят к таблице, или, что более удобно, приближают к нему оптотипы 1-го ряда, пользуясь разрезными таблицами или специальными оптотипами Б. Л. Поляка (рис. 52).

 

 

Рис. 52. Оптотипы Б. Л. Поляка.

С меньшей степенью точности можно определять низкую остроту зрения, пользуясь вместо оптотипов 1-го ряда демонстрацией пальцев рук на темном фоне, так как толщина пальцев примерно равна ширине линий оптотипов первого ряда таблицы и человек с нормальной остротой зрения может их различать с расстояния 50 м.

Остроту зрения при этом вычисляют по общей формуле. Например, если исследуемый видит оптотипы 1-го ряда или считает количество демонстрируемых пальцев с расстояния 3 м, то его visus= = 0,06.

Если острота зрения исследуемого ниже 0,005, то для ее характеристики указывают, с какого расстояния он считает пальцы, например: visus = c46T пальцев на 10 см.

Когда же зрение так мало, что глаз не различает предметов, а воспринимает только свет, остроту зрения считают равной светоощущению: visus= — (единица, деленная на бесконечность, является математическим выражением бесконечно малой величины). Определение светоощущения проводят с помощью офтальмоскопа (рис. 53).

Лампу устанавливают слева и сзади от больного и ее свет с помощью вогнутого зеркала направляют на исследуемый глаз с разных сторон. Если исследуемый видит свет и правильно определяет его направление, то остроту зрения оценивают равной светоощущению с правильной светопроекцией и обозначают visus=— proectia lucis certa, или сокращенно — р. 1. с.

Правильная проекция света свидетельствует о нормальной функции периферических отделов сетчатки и является важным критерием при определении показаний к операции при помутнении оптических сред глаза.

Если глаз исследуемого неправильно определяет проекцию света хотя бы с одной стороны, то такая острота зрения оценивается как светоощущение с неправильной светопроекцией и обозначается visus = — pr. 1. incerta. Наконец, если исследуемый не ощущает даже света, то его острота зрения равна нулю (visus = 0). Для правильной оценки изменений функционального состояния глаза во время лечения, при экспертизе трудоспособности, освидетельствовании военнообязанных, профессиональном отборе и т. п. необходима стандартная методика исследования остроты зрения для получения соизмеримых результатов. Для этого помещение, где больные ожидают приема, и глазной кабинет должны быть хорошо освещены, так как в период ожидания глаза адаптируются к имеющемуся уровню освещенности и тем самым готовятся к исследованию.

Таблицы для определения остроты зрения должны быть также хорошо, равномерно и всегда одинаково освещены. Для этого их помещают в специальный осветитель с зеркальными стенками.

Для освещения применяют электрическую лампу 40 Вт, закрытую со стороны больного щитком. Нижний край осветителя должен находиться на уровне 1,2 м от пола на расстоянии 5 м от больного. Исследование проводят для каждого глаза в отдельности. Для удобства запоминания принято первым проводить исследование правого глаза. Во время исследования оба глаза должны быть открыты. Глаз, который в данный момент не исследуется, заслоняют щитком из белого, непрозрачного, легко дезинфицируемого материала. Иногда разрешается прикрыть глаз ладонью, но без надавливания, так как после надавливания на глазное яблоко острота зрения снижается. Не разрешается во время исследования прищуривать глаза.

Оптотипы на таблицах показывают указкой, длительность экспозиции каждого знака не более 2—3 с.

Остроту зрения оценивают по тому ряду, где были правильно названы все знаки. Допускается неправильное распознавание одного знака в рядах, соответствующих остроте зрения 0,3—0,6, и двух знаков в рядах 0,7—1,0, но тогда после записи остроты зрения в скобках указывают, что она неполная.

Кроме описанного субъективного метода, имеется и объективный метод определения остроты зрения. Он основан на появлении непроизвольного нистагма при рассматривании движущихся объектов. Определение оптокинетического нистагма проводят на нистагмаппарате, в котором через смотровое окно видна лента движущегося барабана с объектами разной величины. Исследуемому демонстрируют подвижные объекты, постепенно уменьшая их размеры. Наблюдая за глазом в роговичный микроскоп, определяют наименьшую величину объектов, которые вызывают нистагмоидные движения глаза.

Этот метод пока еще не нашел широкого применения в клинике и используется в случаях экспертизы и при исследовании маленьких детей, когда субъективные методы определения остроты зрения недостаточно надежны.

Цветоощущение

Способность глаза различать цвета имеет важное значение в различных областях жизнедеятельности. Цветовое зрение не только существенно расширяет информативные возможности зрительного анализатора, но и оказывает несомненное влияние на психофизиологическое состояние организма, являясь в определенной степени регулятором настроения. Велико значение цвета в искусстве: живописи, скульптуре, архитектуре, театре, кино, телевидении. Цвет широко используется в промышленности, транспорте, научных исследованиях и многих других видах народного хозяйства.

Большое значение цветовое зрение имеет для всех отраслей клинической медицины и особенно офтальмологии. Так, разработанный А. М. Водовозовым метод исследования глазного дна в свете различного спектрального состава (офтальмохромоскопия) позволил проводить «цветовую препаровку» тканей глазного дна, что значительно расширило диагностические возможности офтальмоскопии, офтальмофлюорографии.

Ощущение цвета, как и ощущение света, возникает в глазу при воздействии на фоторецепторы сетчатки электромагнитных колебаний в области видимой части спектра.

В 1666 г. Ньютон, пропуская солнечный свет через трехгранную призму, обнаружил, что он состоит из ряда цветов, переходящих друг в друга через множество тонов и оттенков. По аналогии со звуковой гаммой, состоящей из 7 основных тонов, Ньютон выделил в спектре белого цвета 7 основных цветов: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый.

Восприятие глазом того или иного цветового тона зависит от длины волны излучения. Можно условно выделить три группы цветов:

1) длинноволновые — красный и оранжевый;

2) средневолновые — желтый и зеленый;

3) коротковолновые — голубой, синий, фиолетовый.

За пределами хроматической части спектра располагается невидимое невооруженным глазом длинноволновое — инфракрасное и коротковолновое — ультрафиолетовое излучение.

Все многообразие наблюдаемых в природе цветов разделяется на две группы — ахроматические и хроматические. К ахроматическим относятся белый, серый и черный цвета, где средний человеческий глаз различает до 300 различных оттенков. Все ахроматические цвета характеризует одно качество — яркость, или светлота, т. е. степень близости его к белому цвету.

К хроматическим цветам относятся все тона и оттенки цветного спектра. Они характеризуются тремя качествами: 1) цветовым тоном, который зависит от длины волны светового излучения; 2) насыщенность, опpeделяемой долей основного тона и примесей к нему; 3) яркостью, или светлостью, цвета, т.е. степенью близости его к белому цвету. Различные комбинации этих характеристик дают несколько десятков тысяч оттенков хроматического цвета.

В природе редко приходится видеть чистые спектральные тона. Обычно цветность предметов зависит от отражения лучей смешанного спектрального состава, а возникающие зрительные ощущения являются следствием суммарного эффекта.

Каждый из спектральных цветов имеет дополнительный цвет, при смешивании с которым образуется ахроматический цвет — белый или серый. При смешивании цветов в иных комбинациях возникает ощущение хроматического цвета промежуточного тона.

Все многообразие цветовых оттенков можно получить путем смешивания только трех основных цветов — красного, зеленого и синего.

Физиология цветоощущения окончательно не изучена. Наибольшее распространение получила трехкомпонентная теория цветного зрения, выдвинутая в 1756 г. великим русским ученым М. В. Ломоносовым. Она подтверждена работами Юнга (1807), Максвелла (1855) и особенно исследованиями Гельмгольца (1859). Согласно этой теории, в зрительном анализаторе допускается существование трех видов цветоощущающих компонентов, различно реагирующих на свет разной длины волны.

Цветоощущающие компоненты I типа сильнее всего возбуждаются длинными световыми волнами, слабее — средними и еще слабее — короткими. Компоненты II типа сильнее реагируют на средние световые волны, более слабую реакцию дают на длинные и короткие световые волны. Компоненты III типа слабо возбуждаются длинными, сильнее — средними и больше всего — короткими волнами. Таким образом, свет любой длины волны возбуждает все три цветоощущающих компонента, но в различной степени (рис. 54, см. цветную вклейку).

При равномерном возбуждении всех трех компонентов создается ощущение белого цвета. Отсутствие раздражения дает ощущение черного цвета. В зависимости от степени возбуждения каждого из трех компонентов суммарно получается все многообразие цветов и их оттенков.

Рецепторами цвета в сетчатке являются колбочки, но остается невыясненным, локализуются ли специфические цветоощущающие компоненты в различных колбочках или все три вида имеются в каждой из них. Существует предположение, что в ощущении цвета участвуют также биполярные клетки сетчатки и пигментный эпителий.

Трехкомпонентная теория цветного зрения, как и другие (четырех- и даже семикомпонентные) теории, не может полностью объяснить цветоощущение. В частности, эти теории недостаточно учитывают роль коркового отдела зрительного анализатора. В связи с этим их нельзя считать законченными и совершенными, а следует рассматривать как наиболее удобную рабочую гипотезу.

Расстройства цветоощущения. Расстройства цветового зрения бывают врожденными и приобретенными. Врожденные именовались раньше дальтонизмом (по имени английского ученого Дальтона, страдавшего этим дефектом зрения и впервые его описавшим). Врожденные аномалии цветоощущения наблюдаются довольно часто — у 8% мужчин и 0,5% женщин.

В соответствии с трехкомпонентной теорией цветового зрения нормальное ощущение цвета называется нормальной трихромазие и, а люди, им обладающие, — нормальными трихроматами.

Расстройства цветоощущения могут проявляться либо аномальным восприятием цветов, которое называется цветоаномалией, или аномальной трихромазией, либо полным выпадением одного из трех компонентов — дихрома-зией. В редких случаях наблюдается только черно-белое восприятие — монохромазия.

Каждый из трех цветорецепторов в зависимости от порядка их расположения в спектре принято обозначать порядковыми греческими цифрами: красный — первый (протос), зеленый — второй (дейторос) и синий — третий (тритос). Таким образом, аномальное восприятие красного цвета называется протаномалиеи, зеленого — дейтераномалией, синего — тританомалией, а людей с таким расстройством называют соответственно протаномалами, дейтераномалами и тританомалами.

Дихромаз^я наблюдается также в трех формах: а) протанопии, б) дейтеранопии, в) тританопии. Лиц с данной патологией называют протанопами, дейтеранопами и тританопами.

Среди врожденных расстройств цветоощущения наиболее часто встречается аномальная трихромазия. На ее долю приходится до 70% всей патологии цветоощущения.

Врожденные расстройства цветоощущения всегда двусторонние и не сопровождаются на­рушением других зрительных функций. Они обнаруживаются только при специальном исследовании.

Приобретенные расстройства цветоощущения встречаются при заболеваниях сетчатки, зрительного нерва и центральной нервной системы. Они бывают в одном или обоих глазах, выражаются в нарушении восприятия всех трех цветов, обычно сопровождаются расстройством других зрительных функций и в отличие от врожденных расстройств могут претерпевать изменения в процессе заболевания и его лечения.

К приобретенным расстройствам цветоощущения относится и видение предметов, окрашенных в какой-либо один цвет. В зависимости от тона окраски различают: эритропсию (красный), ксантопсию (желтый), хлоропсию (зеленый) и цианопсию (синий). Эритропсия и цианопсия наблюдаются нередко после экстракции катаракты, а ксантопсия и хлоропсия — при отравлениях и интоксикациях.

Диагностика. Для работников всех видов транспорта, рабочих ряда отраслей промышленности и при службе в некоторых родах войск необходимо хорошее цветоощущение. Выявление его расстройств — важный этап профессионального отбора и освидетельствования военнообязанных. Следует учитывать, что лица с врожденным расстройством цветоощущения не предъявляют жалоб, не чувствуют аномального цветовосприятия и обычно правильно называют цвета. Ошибки цветовосприятия проявляются только в определенных условиях при одинаковой яркости или насыщенности разных цветов, плохой видимости, малой величине объектов. Для исследования цветового зрения применяются два основных метода: специальные пигментные таблицы и спектральные приборы — аномалоскопы. Из пигментных таблиц наиболее совершенными признаны полихроматические таблицы проф. Е.'Б. Рабкина, так как они позволяют установить не только вид, но и степень расстройства цветоощущения (рис. 55 см. цветную вклейку).

В основе построения таблиц лежит принцип уравнения яркости и насыщенности. Таблица содержит набор тестов. Каждая таблица состоит из кружков основного и дополнительных цветов. Из кружков основного цветаразной насыщенности и яркости составлена цифра или фигура, которая легко различима нормальным трихроматом и не видна людям с расстройством цветоощущения, так как цветослепой человек не может прибегнуть к помощи различия тона и производит уравнивание по насыщенности. В некоторых таблицах имеются скрытые цифры или фигуры, которые могут различать только лица с расстройством цветоощущения. Это повышает точность исследования и делает его более объективным.

Исследование проводят только при хорошем дневном освещении. Исследуемого усаживают спиной к свету на расстоянии 1 м от таблиц. Врач поочередно демонстрирует тесты таблицы и предлагает называть видимые знаки. Длительность экспозиции каждого теста таблицы 2-3 с, но не более 10 с. Первые два теста правильно читают лица как с нормальным, так и расстроенным цветоощущением. Они служат для контроля и объяснения исследуемому его задачи. Показания по каждому тесту регистрируют и согласуют с указаниями, имеющимися в приложении к таблицам. Анализ полученных данных позволяет определить диагноз цветовой слепоты или вид и степень цветоаномалии.

К спектральным, наиболее тонким методам диагностики расстройств цветового зрения относится аномалоскопия. (от греч. anomalia — неправильность, skopeo — смотрю).

В основе действия аномалоскопов лежит сравнение двухцветных полей, из которых одно постоянно освещается монохроматическими желтыми лучами с изменяемой яркостью; другое поле, освещаемое красными и зелеными лучами, может менять тон от чисто красного до чисто зеленого. Смешивая красный и зеленый цвета, исследуемый должен получить желтый цвет, по тону и яркости соответствующий контрольному. Нормальные трихроматы легко решают эту задачу, а цветоаномалы — нет.

В СССР изготовляется аномалоскоп конструкции Е. Б. Рабкина, при помощи которого при врожденных и приобретенных расстройствах цветового зрения можно проводить исследования во всех участках видимого спектра.

ПЕРИФЕРИЧЕСКОЕ ЗРЕНИЕ



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: