Физические причины специфики наноматериалов




Наиболее сильные изменения свойств наноматериалов и наночастиц наступают в диапазоне размеров кристаллитов порядка 10..100нм. Основные физические причины этого можно проиллюстрировать на рис 3.1.

Для наночастиц доля атомов, находящихся в тонком поверхностном слое (его толщину принимают как правило порядка 1 нм), по сравнению с мезо- и микрочастицами заметно возрастает. Действительно, доля приповерхностных атомов будет пропорциональна отношению площади поверхности частицы S к ее объему V. Если обозначить характерный размер частицы (кристаллита) как D, то: S / V ~ D2/D3 ~ 1/ D. У поверхностных атомов, в отличии от находящихся в объеме твердого тела, задействованы не все связи с соседними атомами. Для атомов находящихся на выступах и уступах поверхности ненасыщенность связей еще выше. В результате в приповерхностном слое возникают сильные искажения кристаллической решетки и даже может происходить смена типа решетки. Другим аспектом, является тот факт, что свободная поверхность является стоком бесконечной емкости для точечных и линейных кристаллических дефектов (в первую очередь вакансий и дислокаций). При малых размерах частиц этот эффект заметно возрастает, что может приводить к выходу большинства структурных дефектов на поверхность и очистке материала наночастицы от дефектов структуры и химических примесей. В настоящее время установлено, что процессы деформации и разрушения протекают в тонком приповерхностном слое с опережением по сравнению с внутренними объемами металлического материала, что во многом определяет

 

 

Рис. 3.1 Основные физические причины специфики наноматериалов

 

Рис.3.2 Зависимость объемных долей границ раздела, границ зерен и тройных стыков [7].

 

 

возникновение ряда физических эффектов, в т.ч. физического предела текучести и физического предела усталости [25-29].

Для наночастиц весь материал будет работать как приповерхностный слой, толщина которого оценивается в диапазоне порядка 0,5…20 мкм. Можно также указать на тонкие физические эффекты, проявляющиеся в специфическом характере взаимодействия электронов со свободной поверхностью.

Следующей причиной специфики свойств наноматериалов является увеличение объемной доли границ раздела с уменьшением размера зерен или кристаллитов в наноматериалах. При этом можно выделить объемную долю следующих составляющих: границ раздела, границ зерен и тройных стыков [6,7]. Объемную долю границ раздела можно оценить по формуле:

DV ГР = 1 -[(D-s)/D] 3, где s – толщина границ раздела (порядка 1 нм), а D - характерный размер зерна или кристаллита. Объемную долю границ зерен – по формуле: DV ГЗ =[ 3 s (D-s) 2 ]/D 3, а объемную долю тройных стыков как разность: DV ТС =DV ГР - DV ГЗ. На рис. 3.2 представлены рассчитанные по этим формулам зависимости указанных объемных долей [6,7]. Видно, что с уменьшением размера зерна от 1 мкм до 2 нм объемная доля межзеренной компоненты (границ раздела) увеличивается с 0,3 до 87,5 %. Объемные доли межзеренной и внутризеренной компонент достигают одинакового значения

Рис. 3.3 а)- Атомная модель наноструктурного материала (черным обозначены атомы зернограничной области у которых смещение превышает 10 % от межатомных расстояний) [32]; б) – Границы зерна в наноструктурной меди(просвечивающая электронная микроскопия, значками отмечены внесенные зернограничные дислокации) [33].

 

 

(по 50%) при размере зерна порядка 5 нм.. После уменьшения размера зерна ниже 10 нм начинает сильно возрастать доля тройных стыков. С этим связывают аномальное падение твердости в этом интервале размеров зерна [30,31]. Комплексные экспериментальные исследования показали, что границы зерен носят неравновесный характер, обусловленный присутствием зернограничных дефектов с высокой плотностью (рис. 3.3) [8,32]. Эта неравновесность характеризуется избыточной энергией границ зерен и наличием дальнодействующих упругих напряжений; границы зерен имеют кристаллографически упорядоченное строение, а источниками упругих полей выступают зернограничные дислокации и их комплексы [8,33]. Неравновесность границ зерен вызывает возникновение высоких напряжений и искажения кристаллической решетки, изменение межатомных расстояний и появление значительных смещений атомов, вплоть до потери дальнего порядка [33]. Результатом является значительное повышение микротвердости.

Важным фактором, действующим в наноматериалах является также склонность к появлению кластеров. Облегчение миграции атомов (групп атомов) вдоль поверхности и по границам раздела, и наличие сил притяжения между ними, которые для наноматериалов больше по сравнению с традиционными материалами (рис.3.4), часто приводят к процессам самоорганизации островковых, столбчатых и других кластерных структур на подложке. Этот эффект уже используют для создания упорядоченных наноструктур для оптики и электроники [11, 34-36].

Еще одну причину специфики свойств наноматериалов связывают с тем, что при процессах переноса (диффузия, пластическая деформация и т.п.) имеет место некоторая эффективная длина свободного пробега носителей этого переноса L e. [4]. При характерных размерах области протекания процессов переноса много больших L e. рассеяние носителей выражено незначительно, но при размерах меньших L e перенос начинает зависеть от размеров и формы весьма значительно. В случае наноматериалов в качестве L e. могут выступать, например, диффузионная длина и длина свободного пробега дислокаций.

Для материалов с размерами кристаллитов в нижнем нанодиапазоне D < 10 нм ряд ученых указывает на возможность проявления квантовых размерных эффектов [4,11]. Такой размер кристаллитов становится соизмеримым с длиной дебройлевской волны для электрона l B ~ (m e E )-1/2 (m e – эффективная масса электрона, E – энергия Ферми). Для металлов l B»0,1…1 нм, а для ряда полупроводников, полуметаллов и тугоплавких соединений переходных металлов l B»10…100 нм [11]. Для любой частицы с малой энергией (скорость v << скорости света c) длина волны Де Бройля определяется как l B = h/mv, где m и v – масса и скорость частицы, а h - постоянная Планка [37]. Квантовые эффекты будут выражаться в частности в виде осциллирующего изменения электрических свойств, например проводимости.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: