МЕТОД СТРЕЛЬБЫ РЕШЕНИЯ КРАЕВОЙ ЗАДАЧИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛНЫХ УРАВНЕНИЙ




ПОСТРОЕНИЕ РАЗНОСТНЫХ СХЕМ ДЛЯ РЕШЕНИЯ КРАЕВОЙ ЗАДАЧИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

 

1. Построение разностной схемы первого порядка. Введём сеточную функцию , где k номер значения сеточной функции. Изменение аргумента определим следующим образом: , где =1.2 - значение аргумента на левом краю, k - номер дискретного значения изменения аргумента, h - величина шага. Таким образом исходное линейное дифференциальное уравнение:

y''+p(x)y'+q(x)y=f(x) (*)

примет вид:

(1)

Заменим выражения производных разностными соотношениями:

(2)

(3)

подставив выражения (2) и (3) в (1) и сгруппировав сомножители при одинаковых номерах значений сеточной функции получим следующее выражение:

(4), где

(4) определяет систему уравнений для нахождения значений . Эта система не может быть решена, так как при k=0..N, туда будут входить значения .

Эти значения могут быть исключены из системы следующим образом.

В общем случае граничные условия заданы в виде:

(5)

x, y, l, h, j, m - некоторые числа, - значения функции и производных соответственно на левом и правом краях.

Здесь также заменим выражения производных разностными соотношениями:

Подставив значения в (5) и выразив , подставим в соотношение (4) записанное для k=0, k=N. После группировки и приведения к виду (4) получим систему уравнений, которую можно представить

(6)

А - матрица имеющая следующий вид:

- значения получающиеся в правой части (4).

Решая систему (6), найдём значения .

Точность данного метода R = ch, где c - некоторая постоянная величина.

2. Построение разностной схемы второго порядка. При построении такой численной схемы всё остаётся справедливо, что и для пункта 1., за исключением того, что аппроксимация первых производных в выражении (1) и граничных условиях (5) должна иметь порядок точности . Такую точность можно получить при приближении производной так (центральная разность):

В результате преобразований получаем выражение (4), но функции a(x), b(x), g(x) определяются следующим образом:

Заменяя выражения производных центральными разностями в краевых условиях и проделывая операции аналогичные описанным в пункте 1. Получим систему уравнений аналогичную (6). Матрица соответствующая системе уравнений будет иметь такую же структуру. Решая систему уравнений, находятся значения . Точность данного метода , где т - некоторая постоянная величина.

 

МЕТОД СТРЕЛЬБЫРЕШЕНИЯ КРАЕВОЙ ЗАДАЧИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛНЫХ УРАВНЕНИЙ

 

Идея метода стрельбы заключается в следующем. Будем искать решение в виде:

,

где С некоторая константа. Подставляя в разностную схему второго порядка такое представление для функции и группируя слагаемые содержащие С, получим следующее выражение:

(7)

a(x), b(x), g(x) - функции определённые для разностной схемы второго порядка.

Проделав то же самое и для краевых условий (5) получим:

(8)

Выражения (7) и (8) будут справедливо для любого С, при равенстве скобки при этом коэффициенте 0. Таким образом задача распадается на две: для и .

Для задача будет такой:

(9)

Условие на левом краю выглядит так:

выбирается произвольно(нельзя брать равной 0, так как получается тривиальное решение). Из (9) можно найти значения .

(10)

Для определения необходимо знать . Её можно исключить, заменив производную в начальных условиях центральной разностью, выразить из полученного выражения, после подставить его в (10) записанное для k=0. Таким образом определим все значения , до N+1 включительно, но выражение для определения будет отличаться от (10).

Для задача будет такой:

(11)

Условие на левом краю выглядит так:

выбирается произвольно. Из (11) можно найти значения .

(12)

Для определения необходимо знать . Действия по её исключению аналогичные исключению . Таким образом определим все значения , до N+1 включительно, но выражение для определения будет отличаться от (12).

Воспользуемся для определения С вторым уравнением системы (8). Из него

Значения производных приближаются с помощью центральной разности.

Зная С, и , можно определить по формуле, приведённой в начале раздела:

Точность метода в связи использования схемы разностной аппроксимации второго порядка .



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: