Аморфные и кристаллические тела




По своим физическим свойствам и молекулярной структуре твёрдые тела разделяются на два класса – аморфные и кристаллические тела.

Твёрдые тела, в которых атомы или молекулы расположены упорядоченно и образуют периодически повторяющуюся внутреннюю структуру, называются кристаллами (см. рис. 1а). Физические свойства кристаллических тел неодинаковы в различных направлениях (это свойство кристаллов называется анизотропностью), но совпадают в параллельных направлениях. Анизотропия механических, тепловых, электрических и оптических свойств кристаллов объясняется тем, что при упорядоченном расположении атомов, молекул или ионов силы взаимодействия между ними и межатомные расстояния оказываются неодинаковыми по различным направлениям.

 

   
(а) (б)

Рис.1

 

Характерной особенностью аморфных тел является их изотропность, т. е. независимость всех физических свойств (механических, оптических и т. д.) от направления. Молекулы и атомы в изотропных твёрдых телах располагаются хаотично (см. рис. 1б). По своей структуре аморфные тела очень близки к жидкостям. Примерами аморфных тел могут служить стекло, различные затвердевшие смолы (янтарь), пластики и т. д. У аморфных тел нет определенной температуры плавления. Если аморфное тело нагревать, то оно постепенно размягчается, и переход в жидкое состояние занимает значительный интервал температур.

Физические свойства кристаллического тела, представленного на рисунке, совпадают вдоль прямых  
  1) (1) и (2)
  2) (1) и (3)
  3) (2) и (3)
  4) (3) и (4)

Конец формы

Начало формы

На рисунке представлены процессы нагревания с переходом в жидкое состояние для четырёх веществ, первоначально находившихся в твёрдом состоянии.   Аморфному телу соответствует график
  1)  
  2)  
  3)  
  4)  

Конец формы

Начало формы

Изотропия физических свойств аморфных тел объясняется тем, что в аморфном теле
  1) межатомные расстояния неодинаковы по различным направлениям
  2) межатомные расстояния в среднем одинаковы по различным направлениям
  3) межатомное взаимодействие больше межатомного взаимодействия в кристаллах
  4) межатомное взаимодействие меньше межатомного взаимодействия в кристаллах

Конец формы

 

   

 

Начало формы
Адсорбция Твёрдое тело, находящееся в газе, всегда покрыто слоем молекул газа, некоторое время удерживающихся на нём молекулярными силами. Это явление называется адсорбция. Количество адсорбированного газа зависит от площади поверхности, на которой могут адсорбироваться молекулы. Адсорбирующая поверхность особенно велика у пористых веществ, пронизанных множеством мелких каналов. Количество адсорбированного газа зависит также от природы газа и от химического состава твёрдого тела. Одним из примеров веществ-адсорбентов является активированный уголь, то есть уголь, освобождённый от смолистых примесей прокаливанием. В промышленности хороший активированный уголь получают из ореховой скорлупы (кокосовой), из косточек некоторых плодовых культур. Классическим примером использования адсорбирующих свойств активированного угля является противогаз. Фильтры, содержащие активированный уголь, применяются во многих современных устройствах для очистки питьевой воды. Активированный уголь применяется в химической, фармацевтической и пищевой промышленности. В медицине процесс выведения из организма чужеродных веществ, попадающих в него из окружающей среды или образовавшихся в самом организме токсических продуктов обмена, называется энтеросорбция. Лекарственные средства, поглощающие и выводящие из желудочно-кишечного тракта вредные, токсичные для организма вещества, называют энтеросорбентами. Эффективность энтеросорбентов зависит от площади их активной поверхности. При заданной массе энтеросорбента площадь активной поверхности обратно пропорциональна размеру его частиц: чем меньше размеры частиц, тем больше суммарная площадь их активной поверхности.
Количество адсорбированного газа зависит
  1) только от природы газа
  2) только от свойств твёрдого тела
  3) от природы газа и химического состава твёрдого тела
  4) от природы газа, химического состава твёрдого тела и площади адсорбирующей поверхности

Конец формы

Начало формы

На диаграмме представлены сравнительные характеристики энтеросорбентов на основе диоксида кремния: удобство дозирования и применения (по вертикальной оси) и эффективность применения в расчёте на 1 г сорбента для выведения токсинов белковой природы (по горизонтальной оси). Размер пузырька адсорбированного газа пропорционален площади активной поверхности, приходящейся на 1 г сорбента.

 

 

Какое(-ие) из утверждений справедливо(-ы)?

А. При одинаковой массе сорбента наиболее эффективным для связывания токсинов является применение белого угля.

Б. Средством, обладающим максимальным удобством в дозировании и применении, является уголь активированный.

 

  1) только А
  2) только Б
  3) и А, и Б
  4) ни А, ни Б

Конец формы

Начало формы

Какие частицы энтеросорбента (крупные или мелкие) окажут большее терапевтическое действие при одинаковой потребляемой массе сорбента? Ответ поясните.

Конец формы

 

  6C5796

 

Начало формы

Пересыщенный пар

Что произойдёт, если сосуд с некоторым количеством жидкости закрыть крышкой? Наиболее быстрые молекулы воды, преодолев притяжение со стороны других молекул, выскакивают из воды и образуют пар над водной поверхностью. Этот процесс называется испарением воды. С другой стороны, молекулы водяного пара, сталкиваясь друг с другом и с другими молекулами воздуха, случайным образом могут оказаться у поверхности воды и перейти обратно в жидкость. Это есть конденсация пара. В конце концов при данной температуре процессы испарения и конденсации взаимно компенсируются, то есть устанавливается состояние термодинамического равновесия. Водяной пар, находящийся в этом случае над поверхностью жидкости, называется насыщенным.

Давление насыщенного пара – наибольшее давление, которое может иметь пар при данной температуре. При увеличении температуры давление и плотность насыщенного пара увеличиваются (см. рисунок).

 

Зависимость плотности насыщенного водяного пара от температуры

 

Водяной пар становится насыщенным при достаточном охлаждении (процесс АВ) или в процессе дополнительного испарения воды (процесс АС). При достижении состояния насыщения начинается конденсация водяного пара в воздухе и на телах, с которыми он соприкасается. Роль центров конденсации могут играть ионы, мельчайшие капельки воды, пылинки, частички сажи и другие мелкие загрязнения. Если убрать центры конденсации, то можно получить пересыщенный пар.

На свойствах пересыщенного пара основано действие камеры Вильсона – прибора для регистрации заряженных частиц. След (трек) частицы, влетевшей в камеру с пересыщенным паром, виден на фотографии как линия, вдоль которой конденсируются капельки жидкости.

Длина трека частицы зависит от заряда, массы, начальной энергии частицы. Длина трека увеличивается с возрастанием начальной энергии частицы. Однако при одинаковой начальной энергии тяжёлые частицы обладают меньшими скоростями, чем лёгкие. Медленно движущиеся частицы взаимодействуют с атомами среды более эффективно и будут иметь меньшую длину пробега.

Плотность водяного пара в воздухе составляет 17,3 гм3. Температура воздуха составляет 22 °С. Образование тумана можно будет наблюдать, если при неизменной плотности водяного пара
  1) температура повысится до 23 °С
  2) температура повысится до 26 °С
  3) температура понизится до 21 °С
  4) температура понизится до 18 °С

Конец формы

Начало формы

Переходу водяного пара, первоначально находящегося в состоянии А (см. рисунок выше), в состояние насыщения
  1) соответствует только процесс АВ
  2) соответствует только процесс АС
  3) соответствует только процесс АD
  4) соответствуют все три указанных процесса: АВ, АС и АD

Конец формы

Начало формы

Ядра дейтерия 21Н и трития 31Н имеющие одинаковую начальную энергию, влетают в камеру Вильсона. У какого из ядер длина пробега будет больше? Ответ поясните.

Конец формы

 

  E556F4

 

Начало формы
Перегретая жидкость Кипением называется процесс образования большого количества пузырьков пара, всплывающих и лопающихся на поверхности жидкости при её нагревании. На самом деле эти пузырьки присутствуют в жидкости всегда, но их размеры растут, и пузырьки становятся заметны только при кипении. Одной из причин того, что в жидкости всегда есть микропузырьки, является следующая. Жидкость, когда её наливают в сосуд, вытесняет оттуда воздух, но полностью этого сделать не может, и его маленькие пузырьки остаются в микротрещинах и неровностях внутренней поверхности сосуда. Кроме того, в жидкостях обычно содержатся микропузырьки пара и воздуха, прилипшие к мельчайшим частицам пыли. Жидкость, очищенная от микропузырьков, может существовать при температуре, превышающей температуру кипения. Такая жидкость называется перегретой. Перегретая жидкость находится в неустойчивом состоянии, и процесс закипания в ней может развиваться взрывообразно, если в жидкость попадают частицы, которые могут служить центрами парообразования. Например, если через перегретую жидкость пролетает заряженная частица, то образующиеся вдоль её траектории ионы становятся центрами парообразования. На основе этого эффекта, открытого Д. Глезером, в 1953 году была создана пузырьковая камера – прибор для регистрации элементарных частиц. След (трек) заряженной частицы, пролетающей через камеру с перегретой жидкостью, виден на фотографии как линия, вдоль которой образуются пузырьки. Длина пробега частицы (длина трека) зависит от заряда, массы, начальной энергии частицы и плотности среды, в которой проходит движение. Длина пробега увеличивается с возрастанием начальной энергии частицы и уменьшением плотности среды. При одинаковой начальной энергии тяжёлые частицы обладают меньшими скоростями, чем лёгкие. Медленно движущиеся частицы взаимодействуют с атомами среды более эффективно и быстрее растрачивают имеющийся у них запас энергии, то есть длина их трека будет меньше.
В одном из двух одинаковых сосудов при комнатной температуре и нормальном атмосферном давлении находится свеженалитая сырая вода, в другом – такое же количество воды, подвергшейся предварительному длительному кипячению. В каком из сосудов при нагревании на одинаковых плитках вода закипит быстрее? Ответ поясните.

Конец формы

Начало формы

Протон и альфа-частица, имеющие одинаковую начальную энергию, влетели в пузырьковую камеру. При этом
  1) треки частиц на фотографии будут неразличимы, так как частицы имеют одинаковую начальную энергию
  2) треки частиц на фотографии будут неразличимы, так как обе частицы имеют положительный заряд
  3) длина пробега протона будет больше, так как начальная скорость движения протона больше
  4) длина пробега протона будет меньше, так как начальная скорость движения протона меньше

Конец формы

Начало формы

Перегретая жидкость – это жидкость, которая
  1) имеет температуру выше 100 °С
  2) имеет температуру выше температуры кипения при данном давлении
  3) содержит микропузырьки пара и воздуха во всем объёме
  4) содержит заряженные частицы

Конец формы

 

  0A0C9F

 

Начало формы

Кипение

Ежедневно мы наблюдаем, как вода и её пар переходят друг в друга. Лужи на асфальте после дождя высыхают, а водяной пар в воздухе по утрам часто превращается в мельчайшие капельки тумана.

Что произойдёт, если сосуд с некоторым объёмом жидкости закрыть крышкой? Каждую секунду поверхность жидкости по-прежнему будут покидать самые быстрые молекулы, её масса будет уменьшаться, а концентрация молекул пара – увеличиваться. Одновременно с этим в жидкость из пара будет возвращаться часть его молекул, и чем больше будет концентрация пара, тем интенсивней будет процесс конденсации. Наконец наступит такое состояние, когда число молекул, возвращающихся в жидкость в единицу времени, в среднем станет равным числу молекул, покидающих её за это время. Такое состояние называют динамическим равновесием, а соответствующий пар – насыщенным паром.

Давление насыщенного пара зависит от вида жидкости и температуры. Чем тяжелее оторвать молекулы жидкости друг от друга, тем меньше будет давление её насыщенного пара. Зависимость давления насыщенного водяного пара от температуры представлена на рисунке.

 

 

Зависимость давления насыщенного водяного пара от температуры

Кипением называется процесс образования большого числа пузырьков пара, происходящий по всему объёму жидкости и на её поверхности при нагревании. На самом деле эти пузырьки присутствуют в жидкости всегда, но их размеры растут, и они становятся заметны только при кипении. Пузырьки расширяются и под действием выталкивающей силы Архимеда отрываются от дна, всплывают и лопаются на поверхности.

Кипение начинается при той температуре, когда пузырьки газа имеют возможность расширяться, а это происходит, если давление насыщенного пара вырастет до атмосферного давления. Таким образом, температура кипения – это температура, при которой давление насыщенного пара данной жидкости равно атмосферному давлению (давлению над поверхностью жидкости).

Можно ли наблюдать процесс пузырькового кипения воды на космической станции в условиях невесомости? Ответ поясните.

Конец формы

Начало формы

В кастрюле-скороварке имеется предохранительный клапан, который открывается при давлении 1,4·105 Па. Температура кипения воды в скороварке
  1) равна 100 °С
  2) равна примерно 110 °С
  3) равна примерно 80 °С
  4) зависит от атмосферного давления

Конец формы

Начало формы

Давление насыщенного пара воды при температуре 20 °С составляет около 2 кПа, а давление насыщенного пара ртути при 20 °С – лишь 0,2 Па. Это означает, что
  1) кипение воды при температуре 20 °С невозможно
  2) кипение ртути при температуре 20 °С невозможно
  3) взаимодействие между молекулами воды сильнее взаимодействия между молекулами ртути
  4) взаимодействие между молекулами ртути сильнее взаимодействия между молекулами воды

Конец формы

 

   

 

Начало формы
Охлаждающие смеси Возьмём в руки кусок сахара и коснёмся им поверхности кипятка. Кипяток втянется в сахар и дойдёт до наших пальцев. Однако мы не почувствуем ожога, как почувствовали бы, если бы вместо сахара был кусок ваты. Это наблюдение показывает, что растворение сахара сопровождается охлаждением раствора. Если бы мы хотели сохранить температуру раствора неизменной, то должны были бы подводить к раствору энергию. Отсюда следует, что при растворении сахара внутренняя энергия системы сахар–вода увеличивается. То же самое происходит при растворении большинства других кристаллических веществ. Во всех подобных случаях внутренняя энергия раствора больше, чем внутренняя энергия кристалла и растворителя при той же температуре, взятых в отдельности. В примере с сахаром необходимое для его растворения количество теплоты отдаёт кипяток, охлаждение которого заметно даже по непосредственному ощущению. Если растворение происходит в воде при комнатной температуре, то температура получившейся смеси в некоторых случаях может оказаться даже ниже 0 °С, хотя смесь и остаётся жидкой, поскольку температура застывания раствора может быть значительно ниже нуля. Этот эффект используют для получения сильно охлажденных смесей из снега и различных солей. Снег, начиная таять при 0 °С, превращается в воду, в которой растворяется соль; несмотря на понижение температуры, сопровождающее растворение, получившаяся смесь не затвердевает. Снег, смешанный с этим раствором, продолжает таять, забирая энергию от раствора и, соответственно, охлаждая его. Процесс может продолжаться до тех пор, пока не будет достигнута температура замерзания полученного раствора. Смесь снега и поваренной соли в отношении 2: 1 позволяет, таким образом, получить охлаждение до –21 °С; смесь снега с хлористым кальцием (CaCl2) в отношении 7: 10 – до –50 °С.
Во что лучше поместить ёмкость с мороженым при его приготовлении для наилучшего охлаждения: в чистый лёд или смесь льда и соли? Ответ поясните.

Конец формы

Начало формы

Внутренняя энергия раствора по сравнению с суммой внутренней энергии кристалла и растворителя при той же температуре в большинстве случаев
  1) больше
  2) меньше
  3) такая же
  4) пренебрежимо мала

Конец формы

Начало формы

Где ноги будут мерзнуть меньше: на заснеженном тротуаре или на таком же тротуаре, посыпанном солью при такой же температуре?
  1) на заснеженном тротуаре
  2) на тротуаре, посыпанном солью
  3) одинаково на заснеженном тротуаре и на тротуаре, посыпанном солью
  4) ответ зависит от атмосферного давления

Конец формы

 

 
Начало формы
Термоэлементы Рассмотрим цепь, составленную из проводников, изготовленных из разных металлов (см. рисунок). Если места спаев металлов находятся при одной температуре, то тока в цепи не наблюдается. Положение станет совершенно иным, если мы нагреем какой-нибудь из спаев, например, спай a. В этом случае гальванометр показывает наличие в цепи электрического тока, протекающего все время, пока существует разность температур между спаями a и b. Рис. Цепь, состоящая из железного и двух медных проводников и гальванометра Значение силы тока, протекающего в цепи, приблизительно пропорционально разности температур спаев. Направление тока зависит от того, какой из спаев находится при более высокой температуре. Если спай a не нагревать, а охлаждать (поместить, например, в сухой лед), то ток потечёт в обратном направлении. Описанное явление было открыто в 1821 г. немецким физиком Зеебеком и получило название термоэлектричества, а всякую комбинацию проводников из разных металлов, образующих замкнутую цепь, называют термоэлементом. Важным применением металлических термоэлементов является их использование для измерения температуры. Термоэлементы, используемые для измерения температуры (так называемые термопары), обладают перед обычными жидкостными термометрами рядом преимуществ: термопары можно использовать для измерения как очень высоких (до 2000°С), так и очень низких температур. Более того, термопары дают более высокую точность измерения температуры и гораздо быстрее реагируют на изменение температуры.  
Термоэлемент – это  
  1) замкнутая цепь, состоящая из комбинации металлических проводников и гальванометра
  2) явление протекания электрического тока в замкнутой цепи, состоящей из разных металлов, при возникновении разности температур спаев
  3) явление протекания электрического тока в замкнутой цепи, состоящей из разных металлов
  4) замкнутая цепь, состоящая из комбинации проводников из разных металлов

Конец формы

Начало формы

Какое преобразование энергии происходит в термоэлементе? Ответ поясните.

Конец формы

Начало формы

При нагревании спаев термопары из меди и константана до температур 100°С и 300°С через гальванометр проходит электрический ток (см. рисунок).   На каком из рисунков показания гальванометра правильно отражают направление и значение силы тока для новой разности температур?  
  1)  
  2)  
  3)  
  4)  

Конец формы

 

  D0CE2D
     

 

Начало формы
Токи Фуко Рассмотрим простейший опыт, демонстрирующий возникновение индукционного тока в замкнутом витке из провода, помещённом в изменяющееся магнитное поле. Судить о наличии в витке индукционного тока можно по нагреванию проводника. Если, сохраняя прежние внешние размеры витка, сделать его из более толстого провода, то сопротивление витка уменьшится, а индукционный ток возрастет. Мощность, выделяемая в витке в виде тепла, увеличится. Индукционные токи при изменении магнитного поля возникают и в массивных образцах металла, а не только в проволочных контурах. Эти токи обычно называют вихревыми токами, или токами Фуко, по имени открывшего их французского физика. Направление и сила вихревого тока зависят от формы образца, от направления и скорости изменяющегося магнитного поля, от свойств материала, из которого сделан образец. В массивных проводниках вследствие малости электрического сопротивления токи могут быть очень большими и вызывать значительное нагревание. Если поместить внутрь катушки массивный железный сердечник и пропустить по катушке переменный ток, то сердечник нагревается очень сильно. Чтобы уменьшить нагревание, сердечник набирают из тонких пластин, изолированных друг от друга слоем лака. Токи Фуко используются в индукционных печах для сильного нагревания и даже плавления металлов. Для этого металл помещают в переменное магнитное поле, создаваемое током частотой 500–2000 Гц. Тормозящее действие токов Фуко используется для создания магнитных успокоителей – демпферов. Если под качающейся в горизонтальной плоскости магнитной стрелкой расположить массивную медную пластину, то возбуждаемые в медной пластине токи Фуко будут тормозить колебания стрелки. Магнитные успокоители такого рода используются в гальванометрах и других приборах.  
Какой железный сердечник будет больше нагреваться в переменном магнитном поле: сердечник, набранный из тонких изолированных пластин, или сплошной сердечник? Ответ поясните  

Конец формы

Начало формы

Медная пластина, подвешенная на длинной изолирующей ручке, совершает свободные колебания. Если пластину отклонить от положения равновесия и отпустить так, чтобы она вошла со скоростью υ в пространство между полюсами постоянного магнита (см. рисунок), то  
  1) колебания пластины резко затухнут
  2) частота колебаний пластины возрастёт
  3) амплитуда колебаний пластины увеличится
  4) пластина будет совершать обычные свободные колебания

Конец формы

Начало формы

Сила вихревого тока, возникающего в массивном проводнике, помещённом в переменное магнитное поле, зависит  
  1) только от формы проводника
  2) только от материала и формы проводника
  3) только от скорости изменения магнитного поля
  4) от скорости изменения магнитного поля, от материала и формы проводника

Конец формы

 

  0D0AEE

 

Начало формы
Принцип действия индукционной плиты В основе действия индукционной плиты лежит явление электромагнитной индукции – явление возникновения электрического тока в замкнутом проводнике при изменении магнитного потока через площадку, ограниченную контуром проводника. Индукционные токи при изменении магнитного поля возникают и в массивных образцах металла, а не только в проволочных контурах. Эти токи обычно называют вихревыми токами, или токами Фуко, по имени открывшего их французского физика. Направление и сила вихревого тока зависят от формы образца, от направления вектора магнитной индукции и скорости его изменения, от свойств материала, из которого сделан образец. В массивных проводниках вследствие малости электрического сопротивления токи могут быть очень большими и вызывать значительное нагревание. Принцип работы индукционной плиты показан на рисунке. Под стеклокерамической поверхностью плиты находится катушка индуктивности, по которой протекает переменный электрический ток, создающий переменное магнитное поле. Частота тока составляет 20–60 кГц. В дне посуды наводятся токи индукции, которые нагревают его, а заодно и помещённые в посуду продукты. Нет никакой теплопередачи снизу вверх, от конфорки через стекло к посуде, а значит, нет и тепловых потерь. С точки зрения эффективности использования потребляемой электроэнергии индукционная плита выгодно отличается от всех других типов кухонных плит: нагрев происходит быстрее, чем на газовой или обычной электрической плите, а КПД нагрева у индукционной плиты выше, чем у этих плит.   Устройство индукционной плиты: 1 ––посуда с дном из ферромагнитного материала; 2 – стеклокерамическая поверхность; 3 – слой изоляции; 4 – катушка индуктивности   Индукционные плиты требуют применения металлической посуды, обладающей ферромагнитными свойствами (к посуде должен притягиваться магнит). Причем чем толще дно, тем быстрее происходит нагрев.
Изменится ли, и если изменится, то как, время нагревания кастрюли на индукционной плите при увеличении частоты переменного электрического тока в катушке индуктивности под стеклокерамической поверхностью плиты? Ответ поясните.  

Конец формы

Начало формы

Дно посуды для индукционных плит может быть выполнено из  
  1) стали
  2) алюминия
  3) меди
  4) стекла

Конец формы

Начало формы

Сила вихревого тока, возникающего в массивном проводнике, помещённом в переменное магнитное поле, зависит
  1) только от формы проводника
  2) только от материала и формы проводника
  3) только от скорости изменения магнитного поля
  4) от скорости изменения магнитного поля, от материала и формы проводника

Конец формы

 

  6B064B

 

Начало формы
Эффект Доплера для световых волн На скорость света не влияют ни скорость источника света, ни скорость наблюдателя. Постоянство скорости света в вакууме имеет огромное значение для физики и астрономии. Однако частота и длина световой волны меняются с изменением скорости источника или наблюдателя. Этот факт известен как эффект Доплера. Предположим, что источник, расположенный в т. О, испускает свет длиной волны λ0. Наблюдатели в точках А и В, для которых источник света находится в покое, зафиксируют излучение с длиной волны λ0 (см. рисунок 1). Если источник света начинает двигаться со скоростью V, то длина волны меняется. Для наблюдателя А, к которому источник света приближается, длина световой волны уменьшается. Для наблюдателя В, от которого источник света удаляется, длина световой волны увеличивается (см. рисунок 2). Так как в видимой части электромагнитного излучения наименьшим длинам волн соответствует фиолетовый свет, а наибольшим – красный, то говорят, что для приближающегося источника света наблюдается смещение длины волны в фиолетовую сторону спектра, а для удаляющегося источника света – в красную сторону спектра.    
Рис. 1 Рис. 2

 

Изменение длины световой волны зависит от скорости источника относительно наблюдателя (по лучу зрения) и определяется формулой Доплера:

(λ−λ0)λ0=vc

Эффект Доплера нашел широкое применение, в частности в астрономии, для определения скоростей источников излучения.

Эффект Доплера справедлив и для звуковых волн. Что происходит с высотой тона звукового сигнала поезда при его удалении от наблюдателя. Ответ поясните.

Конец формы

Начало формы

Примерно сто лет назад американский астроном Весто Слайфер обнаружил, что длины волн в спектрах излучения большинства галактик смещены в красную сторону. Этот факт может быть связан с тем, что
  1) галактики разбегаются (Вселенная расширяется)
  2) галактики сближаются (Вселенная сжимается)
  3) Вселенная бесконечна в пространстве
  4) Вселенная неоднородна

Конец формы

Начало формы

Наблюдатель, к которому источник света приближается, зафиксирует
  1) увеличение скорости света и уменьшение длины световой волны
  2) увеличение скорости света и увеличение длины световой волны
  3) уменьшение длины световой волны и увеличение её частоты
  4) увеличение длины световой волны и уменьшение её частоты

Конец формы

 

  8D6713

 

Начало формы
Магнитная подвеска Средняя скорость поездов на железных дорогах не превышает 150 км/ч. Сконструировать поезд, способный состязаться по скорости с самолетом, непросто. При больших скоростях колеса поездов не выдерживают нагрузку. Выход один: отказаться от колес, заставив поезд лететь. Один из способов «подвесить» поезд над рельсами — использовать отталкивание магнитов. В 1910 году бельгиец Э. Башле построил первую в мире модель летающего поезда и испытал ее. 50-килограммовый сигарообразный вагончик летающего поезда разгонялся до скорости свыше 500 км/ч! Магнитная дорога Башле представляла собой цепочку металлических столбиков с укрепленными на их вершинах катушками. После включения тока вагончик со встроенными магнитами приподнимался над катушками и разгонялся тем же магнитным полем, над которым был подвешен. Практически одновременно с Башле в 1911 году профессор Томского технологического института Б.Вейнберг разработал гораздо более экономичную подвеску летающего поезда. Вейнберг предлагал не отталкивать дорогу и вагоны друг от друга, что чревато огромными затратами энергии, а притягивать их обычными электромагнитами. Электромагниты дороги были расположены над поездом, чтобы своим притяжением компенсировать силу тяжести поезда. Железный вагон располагался первоначально не точно под электромагнитом, а позади него. При этом электромагниты монтировались по всей длине дороги. При включении тока в первом электромагните вагончик поднимался и продвигался вперед, по направлению к магниту. Но за мгновение до того, как вагончик должен был прилипнуть к электромагниту, ток выключался. Поезд продолжал лететь по инерции, снижая высоту. Включался следующий электромагнит, поезд опять приподнимался и ускорялся. Поместив свой вагон в медную трубу, из которой был откачан воздух, Вейнберг разогнал вагон до скорости 800 км/ч!  
Что следует сделать в модели магнитного поезда Б. Вейнберга, чтобы вагончик большей массы двигался в прежнем режиме? Ответ поясните.

Конец формы

Начало формы

При движении поезда на магнитной подвеске
  1) силы трения между поездом и дорогой отсутствуют
  2) силы сопротивления воздуха пренебрежимо малы
  3) используются силы электростатического отталкивания


Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-10-25 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: