Пусть в первых k-1 испытаниях событие А не наступало, а в k-ом испытании появилось. Вероятность этого события .




Свойства функции распределения.

Свойство 1. Функция распределения F(x)–неубывающая функция, т.е. для таких что x1<x2 .

Пусть х1 и х2 принадлежат множеству Ωх и х12.Событие, состоящее в том, что Х примет значение, меньшее, чем х2, т.е. , представим в виде объединения двух несовместимых событий

.

Тогда по теореме сложения вероятностей получим

, т.е.

. Поскольку , то

.

Свойство 2. Для любых

Замечание. Если функция распределения F(x) непрерывная, то свойство выполняется и при замене знаков ≤ и < на < и ≤.

 

Свойство 3. , .

 

, .

Свойство 4. Функция F(x) непрерывна слева. (т.е. ).

Свойство 5. Вероятность того, что значение случайной величины Х больше некоторого числа х, вычисляется по формуле.

.

Достоверное событие {-∞<x<+∞} представим в виде двух несовместимых событий. . Найдем их вероятности

.

Поскольку вероятность достоверного события равна единице, то

. Отсюда .

 

14.Дискретные случайные величины. Закон распределения. Биноминальное, геометрическоеираспределениеПуассона. o Случайная величина Х называется дискретной, если она принимает конечное либо счетное число значений, т.е. Ωх—конечно или счетно. o Законом распределения дискретной случайной величины Х называется совокупность пар чисел вида (хi, рi), где xi—возможные значения случайной величины, а pi—вероятности, с которыми случайная величина принимает эти значения, т.е. , причем . Простейшей формой задания дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины и соответствующие им вероятности.
X x1 x2 xn
P p1 p2 pn

Такая таблица называется рядом распределения дискретной случайной величины.

 

Ряд распределения можно изобразить графически. В этом случае по оси абсцисс откладывают значения xi, а по оси ординат—вероятности pi. Полученные точки соединяют отрезками и получают ломаную, которая является одной из форм задания закона распределения дискретной величины.

Пример. Рассмотрим следующую дискретную случайную величину

X        
P 0,1 0,3 0,2 0,4

 

 

o Говорят, что дискретная случайная величина Х имеет биномиальное распределение с параметрами (n,p), если она может принимать целые неотрицательные значения с вероятностями .

 

X     K n
P pn

Говорят, что случайная величина Х имеет распределение Пуассона с параметром λ (λ>0), если она принимает целые неотрицательные значения с вероятностями.

X 0 1 … k …

P

Обозначают, т.е. случайная величина Х имеет распределение Пуассона с параметром λ.

Пусть производятся независимые испытания, в каждом из которых вероятность появления события А равна р (0<p<1) и, следовательно, вероятность его не появления q=1-p. Испытания заканчиваются как только появится событие А. Таким образом, если событие А появилось в k-ом испытании, то в предшествующих k-1 испытаниях оно не появлялось.

Обозначим через X дискретную случайную величину—число испытаний, которое нужно провести до первого появления события А. Очевидно, возможными значениями случайной величины Х являются натуральные числа.

Пусть в первых k-1 испытаниях событие А не наступало, а в k-ом испытании появилось. Вероятность этого события.

o Говорят, что случайная величина Х имеет геометрическое распределение с параметром р (0<р<1), если она принимает натуральные значения с вероятностями, где q=1-p. X 1 2 3 … k …

P p qp q2p … qk-1p …

Очевидно, что вероятности появления значений 1,2,3… образуют геометрическую прогрессию с первым членом р и знаменателем q (0<q<1).

.При бросании монеты «герб» может появится либо 2, либо 1, либо 0 раз. Т.е. возможные значения Х таковы: х1=0,х2=1, х3=2.

Найдем вероятности этих возможных значений по формуле Бернулли:

;

;

.

 

 

 

16.Дисперсией случайной величины называется число . Дисперсия является мерой разброса значений случайной величины вокруг ее математического ожидания. o Средним квадратическим отклонением случайной величины Х называется число . Ряд распределения случайной величины Х2
Х2      
Р 0,1 0,6 0,3

.

Свойства дисперсии.

Дисперсия постоянной величины С равна 0.DC=0.

.

Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

.

.

Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:

.

Теорема 2. Дисперсия числа появлений события А в n независимых испытаниях, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятность появления и непоявления события в одном испытании: .

Случайная величина Х—число появлений события А в n независимых испытаниях. , где Хi—число наступлений событий в i-ом испытании, взаимно независимые, т.к. исход каждого испытания не зависит от исходов остальных.

 

17.Теорема 1. Математическое ожидание числа появлений события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании: .Будем рассматривать в качестве случайной величины Х число появлений события А в n независимых испытаниях. Очевидно, общее число Х появлений события А в этих испытаниях складывается из чисел появлений события в отдельных испытаниях. Поэтому если Х1—число появлений события в первом испытании, Х2—во втором,…, Хn—в n-ом, то общее число появлений события . По свойству 4: .Согласно примеру 2 . Таким образом, получим . Теорема 2. Дисперсия числа появлений события А в n независимых испытаниях, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятность появления и непоявления события в одном испытании: . Случайная величина Х—число появлений события А в n независимых испытаниях. , где Хi—число наступлений событий в i-ом испытании, взаимно независимые, т.к. исход каждого испытания не зависит от исходов остальных. . . Т.к. MX1=p. , то . Очевидно, что дисперсия остальных случайных величин также равна pq, откуда . Начальным моментом порядка к случайным величинам Хназывают математическое ожидание случайной величины Хk: . В частности, , . Пользуясь этими моментами, формулу для вычисления дисперсии можно записать так: . Кроме моментов случайной величины Х целесообразно рассматривать моменты отклонения Х-ХМ. o Центральным моментом порядка kслучайной величины Х называют математическое ожидание величины (Х-МХ)k. . В частности , . Следовательно, . Исходя из определения центрального момента и пользуясь свойствами математического ожидания, можно получить формулы: . . Моменты более высоких порядков применяются редко. Замечание. Моменты, определенные выше, называют теоретическими. В отличие от теоретических моментов, моменты, которые вычисляются по данным наблюдений, называют эмпирическими.
 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:

Обратная связь