Пусть в первых k-1 испытаниях событие А не наступало, а в k-ом испытании появилось. Вероятность этого события .
Свойства функции распределения.
Свойство 1. Функция распределения F(x)–неубывающая функция, т.е. для таких что x1<x2 .
Пусть х1 и х2 принадлежат множеству Ωх и х1<х2.Событие, состоящее в том, что Х примет значение, меньшее, чем х2, т.е. , представим в виде объединения двух несовместимых событий
.
Тогда по теореме сложения вероятностей получим
, т.е.
. Поскольку , то
.
Свойство 2. Для любых
Замечание. Если функция распределения F(x) непрерывная, то свойство выполняется и при замене знаков ≤ и < на < и ≤.
Свойство 3. , .
, .
Свойство 4. Функция F(x) непрерывна слева. (т.е. ).
Свойство 5. Вероятность того, что значение случайной величины Х больше некоторого числа х, вычисляется по формуле.
.
Достоверное событие {-∞<x<+∞} представим в виде двух несовместимых событий. . Найдем их вероятности
.
Поскольку вероятность достоверного события равна единице, то
. Отсюда .
| 14.Дискретные случайные величины. Закон распределения. Биноминальное,
геометрическоеираспределениеПуассона.
o Случайная величина Х называется дискретной, если она принимает конечное либо счетное число значений, т.е. Ωх—конечно или счетно.
o Законом распределения дискретной случайной величины Х называется совокупность пар чисел вида (хi, рi), где xi—возможные значения случайной величины, а pi—вероятности, с которыми случайная величина принимает эти значения, т.е. , причем .
Простейшей формой задания дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины и соответствующие им вероятности.
X
| x1
| x2
| …
| xn
| …
| P
| p1
| p2
| …
| pn
| …
| Такая таблица называется рядом распределения дискретной случайной величины.
Ряд распределения можно изобразить графически. В этом случае по оси абсцисс откладывают значения xi, а по оси ординат—вероятности pi. Полученные точки соединяют отрезками и получают ломаную, которая является одной из форм задания закона распределения дискретной величины.
Пример. Рассмотрим следующую дискретную случайную величину
o Говорят, что дискретная случайная величина Х имеет биномиальное распределение с параметрами (n,p), если она может принимать целые неотрицательные значения с вероятностями .
Говорят, что случайная величина Х имеет распределение Пуассона с параметром λ (λ>0), если она принимает целые неотрицательные значения с вероятностями.
X 0 1 … k …
P
Обозначают, т.е. случайная величина Х имеет распределение Пуассона с параметром λ.
Пусть производятся независимые испытания, в каждом из которых вероятность появления события А равна р (0<p<1) и, следовательно, вероятность его не появления q=1-p. Испытания заканчиваются как только появится событие А. Таким образом, если событие А появилось в k-ом испытании, то в предшествующих k-1 испытаниях оно не появлялось.
Обозначим через X дискретную случайную величину—число испытаний, которое нужно провести до первого появления события А. Очевидно, возможными значениями случайной величины Х являются натуральные числа.
Пусть в первых k-1 испытаниях событие А не наступало, а в k-ом испытании появилось. Вероятность этого события.
o Говорят, что случайная величина Х имеет геометрическое распределение с параметром р (0<р<1), если она принимает натуральные значения с вероятностями, где q=1-p. X 1 2 3 … k …
P p qp q2p … qk-1p …
Очевидно, что вероятности появления значений 1,2,3… образуют геометрическую прогрессию с первым членом р и знаменателем q (0<q<1).
.При бросании монеты «герб» может появится либо 2, либо 1, либо 0 раз. Т.е. возможные значения Х таковы: х1=0,х2=1, х3=2.
Найдем вероятности этих возможных значений по формуле Бернулли:
;
;
.
|
|