Принципиальная блок – схема расчета центрально нагруженного фундамента




Фундаменты.

1.Особенности сбора нагрузок на фундаменты. Обосновать выбор глубины заложения фундамента. Дать алгоритм расчета фундамента на естественном основании.

 

При расчете по деформациям – необходимо рассматривать расчетные нагрузки с коэффициентом перегрузки равным 1.

 

Нагрузки

 

 

Постоянные

Временные

 

Длительно действующие Кратковременные Особые

(оборудование, склад.мат, снег) (ветер, кран) (сейсмические)

 

Используются 3 сочетания нагрузок:

  1. Основное сочетание – согласно СНиП расчет оснований и фундаментов ведется только по этому сочетанию (постоянные + временные (длительно действующие)).
  2. Дополнительное
  3. Особое

Постоянные нагрузки от веса строительных конструкций определяют по каталогам, рабочим чертежам и паспортным данным заводов изготовителей, а массу изоляционных материалов, выравнивающих слоев, засыпок и т.д. вычисляют по проектным размерам и плотности.

Расчет оснований и фундаментов выполняется на различные сочетания постоянных и временных нагрузок.

При составлении сочетаний нагрузок, включающих более двух временных (снег, перекрытие), их расчетные значения должны умножаться для длительных нагрузок на ψ=0,95, для кратковременных - ψ=0,9. Следует иметь ввиду, что длительно действующая временная нагрузка учитывается при вычислении NIIp, а кратковременная - при NIp

При назначении глубины заложения фундамента необходимо выбрать несущий слой грунта, который совместно с подстилающими слоями обеспечивал бы развитие осадков при уплотнении грунтов не выше предельно допустимого значения и отсутствие перемещения фундаментов после запасания осадок. Решая этот вопрос, учитывают 6 основных факторов:

1. Конструктивные особенности (наличие подвалов, приямков, ввод ком-ций)

2. Инженерно-геологические условия.

3. Особенности соор. возводимых и расположенных рядом.

4. Глубина промерзания.

5. Рельеф стройплощадки.

6. Гидрогеологические условия – на выбор заказчика.

При проектировании фундаментов (т.е. определения основных его размеров) необходимо обеспечить надежное существование сооружений.

Деформации оснований значительно больше деформаций конструкций здания (1/100; 1/200; 1/300 – пролета конструктивного элемента).

Осадки же фундаментов могут определяться десятками сантиметров. (Su = 30 см – для сооружений дымовых труб.)

Данное обстоятельство объясняется тем, что свойства грунтов значительно отличаются от подобных характеристик других строительных материалов:

для грунта Е0 = 2…200 МПа

для конструкций Е =600×103 МПа т.е. грунт во много раз более деформируемый материал, и от его деформаций зависит состояние надземных конструкций.

Алгоритмы расчета естеств.

Алгоритмы расчета прочности конструктивных элементов фундамента включают следующие нормируемые проверки, в результате удовлетворения которых определяют размеры ступеней и армирование:

плитной части:

по продавливанию и раскалыванию;

по поперечной силе;

по обратному моменту;

на изгиб;

на трещиностойкость;

подколонника:

на косое внецентренное сжатие сплошного бетонного и железобетонного сечения;

на изгиб стаканной части;

на смятие под торцом колонны.

 

2.Обосновать выбор глубины заложения фундамента в пучинистых, непучинистых и вечномерзлых грунтах. Дать алгоритм расчета фундамента по II группе предельных состояний.

Основания, сложенные пучинистыми грунтами, должны проектироваться с учетом способности таких грунтов при сезонном или многолетнем промерзании увеличиваться в объеме, что сопровождается подъемом поверхности грунта и развитием сил морозного пучения, действующих на фундаменты и другие конструкции сооружений. При последующем оттаивании пучинистого грунта происходит его осадка.

К пучинистым грунтам относятся глинистые грунты, пески пылеватые и мелкие, а также крупнообломочные грунты с глинистым заполнителем, имеющие к началу промерзания влажность выше определенного уровня. При проектировании оснований, сложенных пучинистыми грунтами, следует учитывать возможность повышения влажности грунта за счет подъема уровня подземных вод, инфильтрации подземных вод и экранирования поверхности.

Пучинистые грунты характеризуются:

- абсолютной деформацией морозного пучения hf, представляющей подъем ненагруженной поверхности промерзающего грунта;

- относительной деформацией (интенсивностью) морозного пучения efh - отношением hf к толщине промерзающего слоя df;

- давлением морозного пучения pfh, действующим нормально к подошве фундамента;

- удельным значением tfh - касательной силы морозного пучения, действующей вдоль боковой поверхности фундамента.

Расчет оснований, сложенных пучинистыми грунтами, должен предусматривать проверку устойчивости фундаментов при действии сил морозного пучения.

Расчет устойчивости фундаментов на воздействие касательных сил морозного пучения, действующих вдоль боковой поверхности фундаментов, должен выполняться при заложении подошвы фундаментов ниже расчетной глубины промерзания пучинистых грунтов.

При заложении фундаментов выше расчетной глубины промерзания пучинистых грунтов (малозаглубленные фундаменты) необходимо производить расчет по деформациям морозного пучения грунтов основания с учетом касательных и нормальных сил морозного пучения.

Если расчетные деформации морозного пучения основания малозаглубленных фундаментов больше предельных или устойчивость фундаментов на действие сил морозного пучения недостаточна, кроме возможности изменения глубины заложения фундаментов, следует рассмотреть необходимость применения мероприятий, уменьшающих силы и деформации морозного пучения, а также глубину промерзания в соответствии с подразделом 5.8 (водозащитные, теплозащитные или физико-химические).

Если при применении указанных мероприятий деформации морозного пучения не исключены, следует предусматривать конструктивные мероприятия, назначаемые исходя из расчета фундаментов и конструкций сооружения с учетом возможных деформаций морозного пучения.

Проектирование фундаментов на вечномёрзлых грунтах.

Существуют два принципа проектирования.

1. Сохранение вечномёрзлого состояния грунтов.

Этот метод целесообразно применять в тех районах, где:

- М.М. имеет значительную мощность;

- сооружения выделяют значительные количества тепла и не занимают больших площадей в плане.

Расчётно-теоретическое и конструктивное обоснование этого принципа было произведено в конце 20-х годов. Однако по такому методу строили здания ещё раньше (Чита, Иркутск). В настоящее же время этот метод является общепризнанным и универсальным, т.к. позволяет наилучшим образом использовать высокие строительные качества любых мёрзлых грунтов. По этому методу построено много промышленных сооружений и целые города (Норильск).

 

 

В результате наблюдений за зданиями, фундаменты которых были возведены по 1 принципу, было установлено, что граница М.М. под зданиями со временем поднимается (отсутствие растительности, солнечной радиации). Это способствует ещё большей устойчивости зданий. Стремясь как можно больше снизить влияния теплового выделения здания на мёрзлые грунты, прибегают к проектированию зданий на столбчатых и свайных фундаментах.

 

Устойчивость фундаментов определяется из условия:

где Q– нормативная сила, удерживающая фундамент от выпучивания;

N – нормативная нагрузка от веса сооружения;

τсм – нормативная величина сил смерзания грунта к боковой поверхности фундамента, кг /см2;

q – нормативная нагрузка от веса сооружения и грунта на его уступах;

gс – коэффициент однородности и условий работы.

g1 – коэффициент перегрузки постоянной нагрузки = 0.9;

g2 – коэффициент перегрузки сил пучения = 1.1;

 

2. Допущение протаивания грунта под зданием (второй принцип строительства).

Осуществляется двумя методами:

а) метод приспособлений конструкций фундаментов и надфундаментных строений к неравномерной осадке оттаивающих грунтовых оснований (конструктивный метод).

Применяется:

· температура вечномерзлой толщи грунтов близка к «0°C »;

 

· грунт при оттаивании относительно мало просадочны S ≤ Su (как правило, относится к гравилистым, щебёночным или песчаным грунтам).

Если величина осадок окажется > допускаемых величин, то переходят к:

б) методу предпостроечного оттаивания - уменьшение осадки оттаявших грунтов осуществляется путём предварительного уплотнения под действием собственного веса.

Применяется:

· основание сооружения имеет неоднородные по сжимаемости в мёрзлом и талом состоянии грунты;

· проектируемое сооружение имеет сосредоточенные избытки тепла (неравномерность оттаивания основания).

Необходимо помнить, что применение того или другого принципа строительства зависит:

  • от особенностей возводимых сооружений;
  • геокриологических условий места постройки.

Следует иметь в виду, что строить сооружения надо одним из двух принципов.

Не в коем случае не смешивать эти принципы, как для соседних зданий и сооружений, так и для сооружений, расположенных в одном и том же районе. И особенно это относится для отдельного сооружения.

Расчет по 2й гр. пред состояний вып-ся для предотвращения образ-я чрезмерного / продолжит раскрытия трещин и для ограничении чрезмерных перемещений (прогибов, углов перекоса, поворота) фунд с обязат. учетом влияний деф-ций и устойчивости грунтов основания.

В действующих Строительных Нормах по проектированию оснований зданий и сооружений принято правило, по которому глубина заложения фундаментов в непучинистых грунтах назначается конструктивно независимо от глубины промерзания, в средне- и сильнопучинистых грунтах - должна быть не менее расчётной глубины промерзания, а в слабопучинистых грунтах глубина заложения фундаментов должна составлять не менее половины расчётной глубины промерзания (табл. 2, СНиП 2.02.01-83*).

Б - в непучинистых грунтах;

 

 

3.Особенности проектирования фундаментов при наличии слабых подстилающих слоев грунта в основании.

Проектирование свайных фундаментов в соответствии с ВСН рекомендуется осуществлять в такой последовательности:

- сбор и анализ исходных данных;

- предварительное назначение расчетных нагрузок на свайный фундамент, размеров свай и глубины заложения свай и ростверка;

- технико-экономическое обоснование принимаемого конструктивного решения свайного фундамента;

- определение количества свай и схемы их распределения под каждой несущей конструкцией;

- проектирование свайного поля под здание или сооружение в целом;

- расчет свайного фундамента по деформациям и уточнение расчетных нагрузок на сваи и глубин их погружения исходя из условия обеспечения абсолютных и относительных деформаций сооружения;

- назначение глубины заложения и конструктивных размеров ростверков, уточнение размеров свай;

- расчет и проектирование ростверков;

- оформление рабочей документации на свайные фундаменты и смет.

При использовании в качестве основания для свай верхнего несущего слоя, подстилаемого слабыми грунтами, допускается применять следующие типы свайных фундаментов:

односвайные фундаменты и сваи-колонны для одноэтажных бескрановых каркасных зданий с нагрузкой на колонну до 500 кН и опор технологических трубопроводов при нагрузке на опору до 200 кН;

ленточные одно- и двухрядные свайные фундаменты под здания с несущими стенами при распределенной линейной нагрузке на фундамент до 800 кН/м;

кустовые фундаменты под каркасные здания и сооружения при нагрузке на каждую сваю до 800 кН;

фундаменты из свайных полей под промышленные трубы, силосные корпуса, жилые и гражданские здания при удельной нагрузке на фундаменты до 0,20 МПа в плоскости подошвы ростверков.

Полную осадку каждого отдельного свайного фундамента проектируемого здания (сооружения) следует определять с учетом взаимного влияния на него других фундаментов того же здания (сооружения) и соседних с ним, фундаменты которых расположены в верхнем несущем слое, подстилаемом слабыми грунтами.

При проектировании схемы расположения свай в плане и глубин их заложения необходимо руководствоваться следующим:

количество и размещение свай в плане определять из условия обеспечения по возможности более равномерной их загрузки во всех фундаментах (неравномерность загружения свай не должна превышать 20%);

глубину заложения свай t от подошвы ростверка рекомендуется предварительно назначать из условия (здесь h1 - расстояние от подошвы ростверка до кровли слабых грунтов) при соблюдении общего требования, чтобы h1 - t = 2 м (см. п. Пункт 1.2), и при этом в пределах одного здания или деформационной секции разница в отметках нижних концов свай не превышала 2 м (уточняется по результатам статического зондирования из условия расположения острия свай в зоне слоя c наибольшей несущей способностью).

При проектировании монолитных железобетонных ростверков, объединяющих головы свай и распределяющих нагрузки на них, надлежит руководствоваться следующим:

ленточные ростверки предусматривать под кирпичные, крупноблочные и крупнопанельные стены линейно протяженных зданий и сооружений;

плитные ростверки устраивать под колонны, дымовые трубы, здания и сооружения точечного (башенного) типа.

Расчет ростверков надлежит выполнять в соответствии с "Руководством по проектированию свайных фундаментов" (НИИОСП им. Герсеванова, Госстрой СССР - М.: Стройиздат, 1980), а именно:

ленточных ростверков - в соответствии с рекомендациями приложений 9 и 10 указанного Руководства - на поперечную силу, изгибающий момент и раскрытие трещин;

плитных ростверков - согласно приложению 11 Руководства - на продавливание колонной и угловой сваей, поперечную силу в наклонных сечениях, на изгиб, на местное сжатие под торцом сборной колонны, на прочность стаканной части, на раскрытие трещин.

Железобетонные ростверки надлежит проектировать из бетона классов В12,5-В25 (М150-М300) на сжатие, назначаемых с учетом результатов данных расчетов силовых факторов, конструктивного назначения высоты ростверка и обеспечения его прочности. При этом глубина заложения ростверков назначается независимо от глубины промерзания.

При устройстве фундаментов около существующих зданий и сооружений необходимо соблюдать следующие условия:

при устройстве котлованов не применять механизмов, вызывающих значительные динамические воздействия на грунт, например, экскаваторов с ковшом драглайн, не рыхлить грунт взрывным способом или снарядами типа клин-баба или шарбаба и т.п.;

не складировать в непосредственной близости от существующих зданий тяжелые штабеля грунта и строительных материалов;

для снижения уровня динамических воздействий на существующие фундаменты при погружении свай или шпунта ударным или вибрационным способами применять лидерные скважины с рыхлением грунта или способ статического вдавливания свай;

во всех случаях применения ударного способа погружения свай или шпунта масса молота должна быть больше массы сваи (шпунта) в 1,5-2 раза при высоте падения молота не более 0,5 м;

фронт свайных работ необходимо продвигать в направлении от существующих зданий и сооружений;

применение подмыва для облегчения погружения свай допускается при расстоянии не менее 20 м от существующих фундаментов.

 

4.Способы определения деформационных характеристик грунтов. Обосновать выбор глубины заложения фундамента.

При определении модуля деформации в полевых условиях допускается проводить испытания грунта при природной влажности с последующей корректировкой полученного значения модуля деформации на основе ко­мпрессионных испытаний. Для этого проводятся параллельные компрессионные испытания грунта природной влажности и грунта, предварительно водонасыщенного до требуемого значения влажности. Полученный в лабораторных опытах коэффициент снижения модуля деформации грунта при его дополнительном водонасыщении используется для корректировки полевых данных.

Наиболее достоверными методами определения деформационных характеристик нескольких грунтов являются полевые их испытания статическими нагрузками в шурфах, дудках или котлованах с помощью плоских горизонтальных штампов площадью 2500-5000 см2, а также в скважинах или в массиве с помощью винтовой лопасти-штампа площадью 600 см2, выполняемые в соответствии с действующим ГОСТом. При этом применительно к рассматриваемым в Пособии методами расчета оснований по деформациям эталонным методом определения деформационных характеристик считаются указанные полевые испытания в шурфах, дудках или котлованах. Расчет модуля деформации грунтов по результатам их ис­пытаний с помощью плоского горизонтального штампа и винтовой лопас­ти-штампа проводится по приведенным в действующем ГОСТе формулам.

Модули деформации песчаных и пылевато-глинистых грунтов, не обладающих резко выраженной анизотропией их свойств в горизонтальном и вертикальном направлениях, могут быть определены их испытани­ями с помощью прессиометров в скважинах и плоских вертикальных шта­мпов (лопастных прессиометров) в скважинах или массиве, выполняемыми в соответствии с действующим ГОСТом с последующей корректировкой получаемых опытных данных. Корректировка этих данных должна осу­ществляться путем их сопоставления с результатами параллельно проводи­мых эталонных испытаний того же грунта с помощью плоских горизонта­льных штампов площадью 2500-5000 см2, а при затруднительности проведения последних (больше глубины испытаний, водонасыщенные грунты) - с результатами испытаний винтовой лопастью-штампом площадью 600 см2.

Указанные параллельные испытания обязательны при исследованиях грунтов для строительства зданий и сооружений I класса. Для зданий и со­оружений II-III классов допускается корректировать результаты испытаний грунтов прессиометрами или плоскими вертикальными штампами с помощью эмпирических коэффициентов, назначаемых в соответствии с указаниями действующего ГОСТа.

Модули деформации песчаных и пылевато-глинистых грунтов могут быть определены методом статического зондирования.

Для зданий и сооружений III класса допускается определять модуль деформации только по данным статического зондирования в зависимости от удельного сопротивления грунта под наконечником зонда qc, используя зависимости:

для печатных грунтов E =3 qc; для суглинков и глин E =7 qc.

Модули деформации песчаных грунтов (кроме пылеватых водонасыщенных) могут быть определены методом динамического зондирова­ния,

Для зданий и сооружений II и III классов допускается определять модули деформации пылевато-глинистых грунтов лабораторными метода­ми (в компрессионных приборах или приборах трехосного сжатия).

Глубина заложения фундаментов должна приниматься с учетом:

назначения и конструктивных особенностей проектируемого сооруже­ния, нагрузок и воздействий на его фундаменты;

глубины заложения фундаментов примыкающих сооружений, а также глубины прокладки инженерных коммуникаций;

существующего и проектируемого рельефа застраиваемой территории;

инженерно-геологических условий площадки строительства (физико-механических свойств грунтов, характера напластований, наличия слоев, склонных к скольжению, карманов выветривания, карстовых полостей и пр.);

гидрогеологических условий площадки и возможных их изменений в процессе строительства и эксплуатации сооружения пп. 2.79-2.117 (пп. 2.177-2.24);

возможного размыва грунта у опор сооружений, возводимых в руслах рек (опор мостов, переходов трубопроводов и т.п.);

глубины сезонного промерзания грунтов.

Выбор рациональной глубины заложения фундаментов в зависимости от учета указанных выше условий рекомендуется выполнять на основе те­хнико-экономического сравнения различных вариантов.

Нормативная глубина сезонного промерзания грунта принимается равной средней из ежегодных максимальных глубин сезонного промерзания грунтов (по данным наблюдений за период не менее 10 лет) на открытой, оголенной от снега горизонтальной площадке при уровне подземных вод, расположенном ниже глубины сезонного промерзания грунтов.

2.123. При использовании результатов наблюдений за фактической глубиной промерзания следует учитывать, что она должна определяться не по глубине проникания в грунт температуры 0°С, а по температуре, ха­рактеризующей согласно ГОСТ 25100-82 переход пластичномерзлого гру­нта в твердомерзлый грунт.

 

5.Дать алгоритмы расчета фундаментов по I группе предельных состояний.

Расчет по предельным состояниям первой группы выполняют, чтобы предотвратить: хрупкое, вязкое или иного характера разрушение (расчет по прочности с учетом в необходимых случаях прогиба конструкции перед разрушением); потерю устойчивости формы конструкции (расчет на устойчивость тонкостенных конструкций и т. п.) или ее положения (расчет на опрокидывание и скольжение подпорных стен, внецентренно нагруженных высоких фундаментов; расчет на всплытие заглубленных или подземных резервуаров и т. п.); усталостное разрушение (расчет на выносливость конструкций, находящихся под воздействием многократно повторяющейся нагрузки подвижной или пульсирующей: подкрановых балок, шпал, рамных фундаментов и перекрытий под неуравновешенные машины и т.п.); разрушение от совместного воздействия силовых факторов и неблагоприятных влияний внешней среды (периодического или постоянного воздействия агрессивной среды, действия попеременного замораживания и оттаивания и т. п.).

6.Указать современные методы определения прочностных характеристик грунтов. Дать алгоритм расчета фундамента с учетом их взаимного влияния.

Для расчета осадки свайного фундамента с учетом взаимного влияния свай в кусте необходимо определить осадку одиночной сваи.

Осадку s, м, одиночной висячей сваи следует определять по формуле

где P - нагрузка на сваю, кН;

 

Is - коэффициент влияния осадки, зависящий:

для жесткой сваи - от отношения l/d, для сжимаемой сваи - от отношения l/d и от относительной жесткости сваи λ = Ep/ESL, где Ep - модуль упругости материала сваи, кПа;

ESL - модуль деформации грунта на уровне подошвы сваи, кПа;

d - диаметр или сторона квадратной сваи, м;

l - длина сваи, м.

Коэффициент влияния осадки Is в формуле (7.35) для жесткой сваи определяют по формуле

 

В качестве основного метода определения прочностных характеристик нескальных грунтов - удельного сцепления с и угла внутреннего трения φ - следует применять лабораторный метод среза образцов грунта в условиях завершенной консолидации. Методику проведения испытания и обработки результатов опыта следуй принимать в соответствии с действующим ГОСТом.

Характеристики прочности нескальных грунтов, с и φ могут быть также определены на приборах трехосного сжатия. При этом необходимо использовать методику консолидированно-дренированных испытаний (испытание при открытой системе).

При определении в лабораторных условиях прочностных характеристик крупнообломочных грунтов необходимо использовать срезные приборы и приборы трехосного сжатия, позволяющие испытывать образцы, у которых отношение диаметра к максимальному размеру крупнообломочных включений более 5.

В полевых условиях для определения прочностных характеристик нескальных грунтов применяются следующие методы: сдвиг целика грунта в заданной плоскости; обрушение массива грунта; выпирание массива грунта.

При сдвиге в заданной плоскости целика грунта в виде свободной призмы или грунта, заключенного в специальную обойму, расчет величин с и φ проводят на основе не менее трех испытаний с различной вертикальной нагрузкой аналогично лабораторным испытаниям в срезных приборах. Выпаривание и обрушение грунта производят для нескальных грунтов при характеристиках их состояния, обеспечивающих способность грунта сохранять вертикальный откос. Значения с и φ вычисляют на основе рассмотрения условий предельного равновесия выпираемого или обрушаемого клина грунта.

Временное сопротивление при одноосном сжатии скальных грунтов устанавливают в соответствии с действующим ГОСТом.

При определении характеристик грунтов, обладающих специфическими свойствами (просадочные, набухающие, заторфованные и т. п.), следует учитывать дополнительные требования, изложенные в разделах 4-10 настоящего Руководства.

Нормативные значения характеристик грунтов, как правило, должны устанавливаться на основе непосредственных определений, выполняемых в полевых или лабораторных условиях для грунтов природного сложения, а также для грунтов искусственного происхождения или сложения.

 

7.Грунтовое основание представлено просадочными грунтами. Дать алгоритм расчета фундамента на просадочных грунтах.

Просадкой грунтов называется быстро протекающая осадка, возникающая при коренном изменении структуры грунтов вследствие избыточного увлажнения. Просадочные грунты относятся к структурно-неустойчивым грунтам, которые меняют свои физико-механические свойства при внешних воздействиях. Свойством просадки обладают обычно лёссы и лёссовидные суглинки. Вследствие наличия крупных пор эти грунты иногда называют макропористыми.

Просадочные лёссовые грунты обладают следующими свойствами: они состоят в основном из пылеватых частиц, имеют большую пористость (около 50 %) и малую влажность. На образцах грунта видны крупные поры (макропоры диаметром 0,5... 5,0 мм и более). В грунте содержится значительное количество карбонатов. При замачивании они быстро размокают и теряют первоначальную структуру. Расчет оснований, сложенных лёссовыми грунтами, выполняют по деформациям, которые равны сумме осадки от внешней нагрузки и просадки при замачивании. Просадочные грунты характеризуются относительной просадочностью, начальным просадочным давлением и начальной просадочной влажностью.

Относительная просадочность — это относительная деформация грунта при его замачивании под нагрузкой. Она устанавливается при испытаниях грунтов при разных напряжениях, вызванных нагрузкой от фундамента и от собственного веса грунта.

В зависимости от условий проявления просадочности лёссовых грунтов различают два типа грунтовых условий:

• I тип грунтовых условий, при которых просадка происходит в основном от действия внешней нагрузки, а просадка от собственного веса либо не происходит, либо ее значение не превышает 5 см;

• II тип грунтовых условий, при которых просадка происходит от внешней нагрузки и собственного веса при значении просадки более 5 см.

Так как просадочность грунтов в пределах строительной площадки существенно меняется, для получения достоверных данных необходимо определить ее в разных точках как по простиранию, так и по глубине. В зависимости от величины значения при возможности замачивания выбирают тип фундамента и основания. Для определения ожидаемой просадки необходимо иметь следующие исходные материалы:

• напластование грунтов, относительная просадочность каждого слоя при любом интересующем давлении, положение уровня грунтовых вод;

• размеры фундамента, глубина его заложения, давление по подошве.

 

Затем обычными методами определяются напряжения от собственного веса грунта и от дополнительной нагрузки, передаваемой фундаментом. Эпюра давлений от собственного веса строится на всю просадочную толщу до уровня до уровня грунтовых вод. Эпюра давлений от уплотняющей нагрузки (фундамента) строится на глубину, установленную нормами. Зная величину суммарных напряжений в каждом слое грунта и относительную просадочность при данном напряжении, находят величину просадки.

При определении просадки от собственного веса промежуточные значениях определяют интерполяцией.

Проектирование фундаментов на просадочных грунтах осуществляется в следующей последовательности:

а) оцениваются инженерно-геологические условия, свойства грунтов, определяется тип грунтовых условий по просадочности:

б) рассматриваются варианты устранения просадочных свойств грунтов, прорезки всей толщи грунтов глубокими фундамента

ми, комплекс водозащитных и конструктивных мероприятий;

в) выбирается глубина заложения фундамента;

г) определяются размеры фундамента на естественном основании;

д) определяется возможная просадка основания;

е) уточняются тип основания, глубина заложения, тип фундамента, размеры фундамента;

е) в случае необходимости рассчитывается искусственное основание;

ж) производится конструктивный расчет фундамента.

При анализе инженерно-геологических условий, в первую очередь, оценивают просадочные свойства грунтов. Возможность просадки от собственного веса и ее величина определяются в процессе изысканий путем опытного замачивания в полевых условиях. В зависимости от типа грунтовых условий назначаются мероприятия, обеспечивающие эксплуатационную пригодность сооружения.

При I типе просадка возможна только от веса сооружения при попадании воды непосредственно под фундаменты. Для исключения возможности такой просадки устраняют просадочность грунта в пределах деформируемой зоны. При II типе требуется осуществить дополнительные водозащитные или конструктивные мероприятия и устранить просадочные свойства грунта на всю глубину просадочной толщи. При выборе глубины заложения фундаментов учитывают, что верхняя часть лёссовых грунтов часто разрыхлена землероями. Эту зону прорезают и закладывают фундаменты на отметке, где число ходов землероев — не больше двух на 1 м2 дна котлована.

При проектировании учитывают, что прорезка всего просадочного слоя снижает просадку до нуля. Рост стоимости фундамента при этом может быть компенсирован экономией на устройстве искусственного основания или водозащитных и конструктивных мероприятиях. Это устанавливается технико-экономическим сравнением вариантов. Устройство глубоких котлованов в просадочных грунтах технически не затруднено: грунты безводны, хорошо держат вертикальные откосы, разработка осуществляется обычными землеройными механизмами.

Предварительное определение размеров фундаментов на просадочном грунте производится так же, как на обычных непроса-дочных грунтах, с использованием расчетного сопротивления грунта.

При устройстве фундаментов в вытрамбованном ложе сначала забивают в грунт инвентарные пирамидальные или конические элементы (трамбовки), устраивая вытрамбованные котлованы, в которых затем бетонируют монолитные фундаменты или устанавливают сборные конструкции. Их применяют как в непросадочных, так и в просадочных грунтах. В первом случае эти фундаменты позволяют снизить расход материалов, во втором — устранить просадочные свойства грунтов.

Забивные блоки и трамбовки можно погружать в грунт с помощью обычных сваебойных агрегатов. Вытрамбованные котлованы также устраивают с помощью сбрасываемой с высоты 4...8 м трамбовки, получая глубину уплотнения в пределах 0,6... 3,0 м. После забивки блока или после трамбовки вокруг них образуется уплотненная зона грунта, что повышает несущую способность или устраняет просадочность. Полученный трамбованием котлован заполняют бетоном или монтируют в него сборный фундамент. Такие фундаменты можно использовать подобно отдельно стоящим или свайным фундаментам: как столбчатые под колонны каркасных зданий и как ленточные под стены, в том числе прерывистые, с расчетным расстоянием между отдельными забивными блоками или блоками в вытрамбованных котлованах. Рекомендуется использовать фундаменты в вытрамбованных котлованах в просадочных грунтах II типа, если суммарная величина деформации, определяемая просадкой от собственного веса грунта и осадкой от нагрузки, не превышает предельных значений, рекомендуемых нормами, а также для одноэтажных производственных и складских зданий с конструкциями, малочувствительными к неравномерным деформациям, с нагрузкой на отдельный фундамент не более 400 кН и просадкой от собственного веса грунта до 20 см.

В проект забивных фундаментов входят обычные данные, приведенные ранее для свайных фундаментов; в случае выполнения фундаментов с трамбованием грунта в проекте дополнительно указывают размеры предусматриваемых в результате трамбования котлованов, параметры используемых трамбовок (размеры, масса, высота сбрасывания, рекомендуемое количество ударов), рекомендуемую влажность трамбуемых грунтов, требуемое количество воды для увлажнения грунтов, ориентировочные размерыуплотненной зоны, расстояния между котлованами прерывистых ленточных фундаментов, размеры уширенной зоны основания, объем втрамбованного в грунт жесткого материала (бетона, щебня, песчано-гравийной смеси), расчетные прочностные и деформационные характеристики уплотненных грунтов, условное расчетное сопротивление и действующие нагрузки.

Конструктивные решения узлов опирания колонн или стен на фундаменты в виде забивных блоков или в вытрамбованном ложе аналогичны конструктивным решениям узлов для столбчатых, ленточных или свайных фундаментов: колонны могут заделываться в стакан, стены из штучных материалов опирают на фундаментные балки, а панельные — непосредственно на блоки фундамента. Фундаментные балки опирают непосредственно на фундаменты или на набетонки. Блоки прерывистых ленточных фундаментов размещают на расчетных расстояниях.

Расчетное сопротивление грунта основания забивных блоков или в вытрамбованном котловане находят как минимальное значение из двух расчетных сопротивлений:

1) полученного с использованием прочностных характеристик уплотненных грунтов в водонасыщенном состоянии;

2) определенного по формуле, по давлению на грунт природного сложения, подстилающего уплотненную зону.

Если при забивке трамбовки в дно котлована втрамбовывают жесткий насыпной материал (щебень, жесткий бетон и др.), то несущую способность такого фундамента с уширенным основанием определяют при полном замачивании просадочного грунта как наименьшее из значений несущей способности по жесткому материалу, втрамбованному в дно котлована, по уплотненному грунту в пределах зоны уплотнения, по грунту природной плотности и влажности, находящемуся ниже уплотненной зоны.

Осадки основания фундаментов определяют по схеме двухслойного основания из уплотненного слоя и подстилающего просадочного грунта. Они определяются без учета сжатия жесткого материала, втрамбованного в грунт основания. Размер фундамента в плане принимается равным размерам поперечного сечения уширенного основания из жесткого материала в месте наибольшего уширения, глубина заложения — по низу уширенной части основания.

При проектировании фундаментов в



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: