Поступление веществ в клеточную стенку (1-й этап). Поглощение веществ клеткой начинается с их взаимодействия с клеточной оболочкой. Еще работами Д. А. Сабинина и И. И. Колосова было показано, что клеточная оболочка способна к быстрой адсорбции ионов. Причем эта адсорбция в ряде случаев носит обменный характер. В дальнейшем в опытах с выделенными клеточными оболочками было показано, что их можно рассматривать как ионообменник. На поверхности клеточной оболочки оказываются адсорбированными ионы Н+ и НС03-, которые в эквивалентных количествах меняются на ионы, находящиеся во внешней среде. Первый этап поступления характеризуется большой скоростью и обратимостью. Поступившие ионы легко вымываются. Это пассивный диффузионный процесс, идущий по градиенту электрохимического потенциала.
Поступление веществ через мембрану (2-й этап). Для того чтобы проникнуть в цитоплазму и включиться в метаболизм клетки, вещества должны пройти через мембрану — плазмалемму. Перенос веществ через мембрану может идти пассивным и активным путем. При пассивном поступлении веществ через мембрану основой переноса и в этом случае является диффузия. Скорость диффузии зависит от толщины мембраны и от растворимости вещества в липидной фазе мембраны. Поэтому неполярные вещества, которые растворяются в липидах (органические и жирные кислоты, эфиры), легче проходят через мембрану. Однако большинство веществ, которые важны для питания клетки и ее метаболизма не могут диффундировать через липидный слой и транспортируются с помощью белков, которые облегчают проникновение воды, ионов, Сахаров, аминокислот и других полярных молекул в клетку. В настоящее время показано существование трех типов таких транспортных белков: каналы, переносчики, помпы.
|
Три класса транспортных белков:
1 — белковый канал;
2 — переносчик;
3 — помпа.
Каналы — это трансмембранные белки, которые действуют как поры. Иногда их называют селективными фильтрами. Транспорт через каналы, как правило, пассивный. Специфичность транспортируемого вещества определяется свойствами поверхности поры. Как правило, через каналы передвигаются ионы. Скорость транспорта зависит от их величины и заряда.
Переносчики — это специфические белки, способные связываться с переносимым веществом. В структуре этих белков имеются группировки, определенным образом ориентированные на наружную или внутреннюю поверхность. В результате изменения конформации белков вещество передается наружу или внутрь. Поскольку для транспорта каждой отдельной молекулы или иона переносчик должен изменить конфигурацию, скорость транспорта вещества в несколько раз меньше, чем происходит перенос через каналы. Показано наличие транспортных белков не только в плазмалемме, но и в тонопласте. Транспорт с помощью переносчиков может быть активным и пассивным. В последнем случае такой транспорт идет по направлению электрохимического потенциала и не требует затрат энергии. Этот тип переноса называется облегченной диффузией. Благодаря переносчикам он идет с большей скоростью, чем обычная диффузия.
Согласно представлениям о работе переносчиков, транспорт с участием переносчиков обладает свойством насыщения, т. е. при увеличении концентрации веществ в окружающем растворе скорость поступлении сначала возрастает, а затем остается постоянной. Это объясняется ограниченным количеством переносчиков.Переносчики специфичны, т. е. участвуют в переносе только определенных веществ и, тем самым, обеспечивают избирательность поступления.
|
Комплекс ионофор К+
Это не исключает того, что один и тот же переносчик может обеспечивать перенос нескольких ионов. Например, переносчик К+, обладающий специфичностью для этого иона, также переносит Rb+ и Na+, но не транспортирует Сl- или незаряженные молекулы сахарозы. Транспортный белок, специфичный для нейтральных кислот, хорошо переносит аминокислоты глицин, валин, но не аспарагин или лизин. Благодаря разнообразию и специфичности белков осуществляется избирательная их реакция с веществами, находящимися в среде, и, как следствие, их избирательный перенос.
Насосы (помпы) — интегральные транспортные белки, осуществляющие активное поступление ионов. Термин «насос» показывает, что поступление идет с потреблением свободной энергии и против электрохимического градиента. Энергия, используемая для активного поступления ионов, поставляется процессами дыхания и фотосинтеза и в основном аккумулирована в АТФ. Как известно, для использования энергии, заключенной в АТФ, это соединение должно быть гидролизовано по уравнению АТФ + НОН —> АДФ + Фн. Ферменты, осуществляющие гидролиз АТФ, называются аденозинтрифосфатазы (АТФазы). В мембранах клеток обнаружены различные АТФазы: К+ — Na+ — АТФаза; Са2+ — АТФаза; Н+ — АТФаза. Н+— АТФаза (Н+—насос или водородная помпа) является основным механизмом активного транспорта в клетках растений, грибов и бактерий. Н+ — АТФаза функционирует в плазмалемме и обеспечивает выброс протонов из клетки, что приводит к образованию электрохимической разности потенциалов на мембране. Н+— АТФаза переносит протоны в полость вакуоли и в цистерны аппарата Гольджи.
|
Насосы делят на две группы:
1. Электрогенные, которые осуществляют активный транспорт иона какого-либо одного заряда только в одном направлении. Этот процесс ведет к накоплению заряда одного типа на одной стороне мембраны.
2. Электронейтральные, при которых перенос иона в одном направлении сопровождается перемещением иона такого же знака в противоположном либо перенос двух ионов с одинаковыми по величине, но разными по знаку зарядами в одинаковом направлении.
Рассмотрим механизм работы насоса на примере К+ — Na+ — АТФазы.
Этот насос, переносит из клетки три иона натрия, а в клетку два иона калия. Это приводит к возникновению положительного заряда на мембране. Предполагается, что АТФ-аза располагается поперек мембраны и происходит образование комплекса фермента с АТФ на внутренней поверхности мембраны, а также связывание ионов натрия. Освобождаемая при распаде АТФ энергия используется для изменения конфигурации самой АТФ-азы, благодаря Чему участок фермента, связывающий Na+, поворачивается и оказывается по другую сторону мембраны. На внешней поверхности мембраны происходит реакция ионного обмена Na+ на К+ и обратный поворот ферментного комплекса. Возвращение фермента в исходное состояние сопровождается освобождением ионов калия и неорганического фосфата. В этом случае АТФаза осуществляет гидролиз АТФ и использует выделяющуюся энергию для переноса ионов, непосредственно являясь переносчиком. Поэтому такой тип транспорта получил название первично-активный. Первично-активный транспорт связан с гидролизом АТФ или окислительно-восстановительными реакциями в электронтранспортной цепи хлоропластов и митохондрий. Примером последнего служит непосредственное использование энергии дыхания на перенос ионов против градиента концентрации без предварительного накопления в АТФ. Механизм этого явления заключается в том, что в результате процесса дыхания на одной стороне мембраны (наружной) накапливаются ионы водорода, при этом внутренняя сторона мембраны заряжается отрицательно. Катионы поступают внутрь, притягиваясь к отрицательно заряженной внутренней стороне мембраны. Однако существует и другой механизм активного транспорта веществ, который называют вторично-активным.
При этом переносчиками являются специальные белки, а энергия АТФ, высвобождаемая с помощью АТФазы, затрачивается на их перемещение в мембране. Благодаря работе Н+ — АТФазы происходит выход протонов из клетки и на мембране возникает разность электрохимических потенциалов. Это и используется для транспорта других ионов (веществ) при участии переносчиков. Так как первично-активный транспорт Н+ против градиента электрохимического потенциала опосредует транспорт другого иона (или молекулы) по градиенту электрохимического потенциала, поэтому такой тип транспорта называют вторично-активным. Если переносчик транспортирует два вещества в противоположном направлении, то такой встречный перенос получил название антипорт. Примером является поступление Na+, Mg+2, Мn+2 в антипорте с протонами при работе Н+ — АТФазы. Вещества могут поступать и в одном направлении с выкачиваемым Ионом. При этом переносчик осуществляет совместный однонаправленный перенос веществ или ионов, т. е. симпорт. Экспериментальные данные позволяют включить, что в симпорте с протонами в растительную клетку поступают аминокислоты, сахара, Cl-, N03- и другие анионы. Перенос ионов калия при низких концентрациях происходит благодаря симпорту с протонами, а при высоких идет через специальные калиевые каналы.
Таким образом, перенос ионов через мембрану может осуществляться активным и пассивным путем. В обеспечении транспортной функции мембран и избирательности поглощения большую роль играют транспортные белки: каналы, переносчики и помпы. В настоящее время для многих транспортных белков гены клонированы. Идентифицированы гены, кодирующие калиевые каналы. На арабидопсисе получены мутации генов, которые влияют на транспорт и восстановление нитратов. Показано, что в геноме растений за транспорт веществ через мембраны отвечает не один ген, а несколько. Такая множественность обеспечивает выполнение функции в различных частях растений, что позволяет транспортировать вещества из одной ткани в другую.
Наконец, клетка может «заглатывать» питательные вещества вместе с водой (пиноцитоз). Пиноцитоз — это впячивание поверхностной мембраны, благодаря которому происходит заглатывание капелек жидкости с растворенными веществами. Явление пиноцитоза известно для клеток животных. Сейчас доказано, что оно характерно и для клеток растений. Процесс этот можно подразделить на несколько фаз: 1) адсорбция ионов на определенном участке плазмалеммы; 2) впячивание, которое происходит под влиянием заряженных ионов; 3) образование пузырьков с жидкостью, которые могут мигрировать по цитоплазме; 4) слияние мембраны, окружающей пиноцитозный пузырек, с мембранами лизосом, эндоплазматической сети или вакуоли и включение веществ в метаболизм. С помощью пиноцитоза в клетки могут попадать не только ионы, но и различные растворимые органические вещества.
Все химические реакции, протекающие в клетке,— и синтеза и распада — осуществляются с помощью ферментов. Ферменты — белковые вещества, ускоряющие течение реакций. Ускорение это настолько велико, что без ферментов подобные реакции вообще были бы невозможны в клетке. Известны случаи, когда благодаря ферменту реакция ускоряется в 10/11 раз. Это значит, что реакция, заканчивающаяся с участием фермента в течение 0,01 сек, без него протекала бы 31 год. Понятно, что такие реакции без фермента были бы просто нереальными.
Митохондрии
— мелкие тельца округлой или продолговатой формы, размером 0,5 — 1,5 мк, т. е. величиной с бактерию. Число их в клетке обычно велико, порядка 100—3000. Бывают, однако, клетки и с малым количеством митохондрий. Так, в спермин морской водоросли фукуса содержится всего 4 митохондрии, а в одноклеточной водоросли микромонас — одна. Митохондрии видны под световым микроскопом, однако их тонкое строение можно изучать лишь с помощью электронного микроскопа (табл. 10, схема строения — рис. 31). Митохондрии — это образования, построенные из липопротеиновых мембран, погруженных в основное вещество — матрикс. Оболочка митохондрии образована двумя мембранами, между которыми имеется промежуток.
Внутренняя из мембран оболочки дает многочисленные впячивания внутрь, это кристы. Между ними находится матрикс. И внутренняя мембрана оболочки митохондрии, и образуемые ею кристы построены иэ упорядочение расположенных ферментов. Благодаря складкам — кристам рабочая поверхность мембран внутри митохондрий очень велика. Ряд ферментов находится в матриксе митохондрии, т. е. между кристами. Совокупность этих ферментов осуществляет внутриклеточное дыхание и запасание освобождающейся при дыхании энергии в форме АТФ. Работа митохондрий тесно связана с процессами, идущими в гиалоплазме, где протекают первые этапы расщепления глюкозы и других веществ до пировиноградной кислоты. В митохондриях же протекает дальнейшее ее расщепление. Пировиноградная кислота проникает в митохондрии и здесь ступенчато, шаг за тагом, окисляется до углекислого газа и воды, причем одновременно потребляется кислород. Это и есть внутриклеточное дыхание, при котором клетка, расщепляя и окисляя вещества, добывает очень много энергии, которую она потом может использовать для самых разных своих нужд. Митохондрии способны синтезировать часть тех веществ, из которых состоят они сами. Благодаря этому митохондрии могут размножаться.