V.3.1.1. Выбор группы соединений обмоток в трёхфазных трансформаторах.




На практике чаще всего встречаются следующие схемы соединений: Yy, Dy, Yd, Yz и Dz. Кроме того, обмотки, соединённые в звезду и зигзаг, имеют нейтральную точку, которая может быть выведена или скрыта. Правильный выбор схемы соединений трёхфазных трансформаторов зависит от нескольких факторов:

  • схемы питания трансформатора:
    • трансформатор с питанием от сети (трёхпроводной, четырёхпроводной);
    • трансформатор с питанием от преобразователя;
  • мощности трансформатора;
  • уровня напряжения;
  • асимметрии нагрузки:
    • асимметрии нагрузки при питании от симметрической схемы напряжений;
    • асимметрии нагрузки вследствие асимметричной схемы напряжения питания;
  • экономических соображений (стоимость изготовления трансформатора с различными схемами соединений).

1. Схема соединений обмоток Yy используется, в основном, в трансформаторах небольшой номинальной мощности, питающих симметричные трёхфазные электроприемники. Иногда данный вид соединений применяется в схемах большой номинальной мощности, в том случае если требуются заземление нейтральной точки звезды.

Схема неудобна, принимая во внимание необходимость ограничения негативного влияния высших гармоник ряда v=3n (n=1,3,7…) в токе холостого хода при питании от трёхпроводной сети. Кроме того, она невыгодна при асимметричной нагрузке (токи нулевой последовательности), когда выведена нейтральная точка звезды вторичных обмоток. Это вызывает необходимость дополнительной, так называемой компенсационной, обмотки, соединённой в треугольник.

2. Схема соединения обмоток Dy используется, в основном, в понижающих трансформаторах большой мощности. Трансформаторы с таким соединением обмоток работают в составе систем питания токораспределительных сетей низкого напряжения. Как правило, нейтральная точка звёзды заземляется, обеспечивая возможность использования как линейного, так и фазного напряжений. Данное соединение очень выгодно, принимая во внимание сокращение третьей гармоники тока и токов нулевой последовательности при ассиметричной нагрузке.

3. Схема соединений обмоток Yd используется, в основном, в повышающих трансформаторах. Трансформатор с такой схемой соединений удобен, если нейтральная точка звезды первичной обмотки должна быть глухо заземлена или заземлена через дроссель. Соединение обмоток в треугольник в первичной или вторичной обмотках очень выгодно, из-за того, что третья гармоника намагничивающего тока протекает по замкнутой цепи треугольника и магнитный поток третьей гармоники практически отсутствует.

4. Схема соединений обмоток Yz и Dz используется, в основном, в понижающих трансформаторах небольшой номинальной мощностью. При такой схеме нейтральная точка соединения обмоток в зигзаг выведена на клеммную колодку для того, чтобы иметь возможность использовать фазные напряжения. Данное решение применяется редко, прежде всего, из экономических соображений. Сравнивая, например, звезду и зигзаг, при одинаковом номинальном токе и одинаковом сечении проводов, можно сделать вывод, что количество витков зигзага при одинаковом наименьшем линейном напряжении в 2/√3 раза превышает количество витков звезды, отсюда стоимость меди в зигзаге более чем на 15% превышает стоимость меди в звезде. Поэтому использование таких схем ограничивается, прежде всего, питанием асимметричных потребителей (например, в случае большого количества однофазных потребителей), когда необходимо симметричное распределение фазных напряжений во вторичной части трансформатора.

Группы соединений обмоток трансформаторов определяются и характеризуются взаимным угловым смещением линейных векторов ЭДС в обмотках ВН, СН и НН. Смещение этих векторов определяется схемой соединения обмоток в звезду или треугольник и направлением их намотки. Соединяя обмотки ВН, СН и НН по этим схемам и изменяя направления их намотки, получают различные группы соединения обмоток трансформаторов. При различных соединениях обмоток в звезду и треугольник можно получить 12 различных углов сдвига фаз линейных ЭДС от 0 до 330° через каждые 30°, т.е. получить 12 различных групп.

Для определения угла сдвига фаз удобно пользоваться часовым обозначением — стандартным. Часовое обозначение векторов ЭДС заключается в следующем: вектор линейной ЭДС обмотки ВН изображается на часовом циферблате минутной стрелкой и всегда устанавливается на 0 (12) ч, а вектор линейной ЭДС обмотки СН (трехобмоточного трансформатора) или НН изображается часовой стрелкой и указывает группу в часовом обозначении.

В условном обозначении группы соединения обмоток трансформаторов первая буква указывает соединение обмотки ВН, а буквы через косую определяют соединение обмотки НН для дву-хобмоточного (например, Г„/Д) или соединение обмоток СН и НН для трехобмоточного трансформатора (например, YJYJjy, где YH — звезда с нейтралью), цифры указанные через тире характеризуют угол сдвига фаз линейных ЭДС в часовом обозначении (для двухобмоточного трансформатора пишут одну цифру, а для трехобмоточного — две: первая — группа соединения между обмотками ВН и СН, вторая — между обмотками ВН и НН).
Группа обозначается на заводском щитке трансформатора. Но если к одному из двух параллельных трансформаторов с одинаковыми группами соединений подключить фазы сети не в соответствии с обозначением фаз на вводах трансформатора, то вторичное напряжение будет иметь различный сдвиг фаз. Циклическим перемещением фаз на вводах можно получить для одного и того же трансформатора три различные группы соединений.
Стандартные схемы и группы соединения обмоток ВН, СН и НН трансформаторов приведены на рис. 1

 

 

 

Производство, преобразование, транспортировка, распределение и потребление электрической энергии осуществляется по симметричной трехфазной системе проводов. Симметричность системы достигается равенством фазных и линейных напряжений, равномерной загрузкой всех фаз по току, одинаковым сдвигом фаз напряжений и токов.

Однако, в процессе эксплуатации неизбежны нарушения симметрии трехфазной системы, которые могут быть вызваны: обрывом провода, пробоем изоляции, перекрытием на посторонние предметы, непереключением фаз коммутационных аппаратов и пр.

В любом случае, несимметрия ведет к появлению токов обратной и нулевой последовательности, а также апериодической составляющей токов, которые могут быть опасны для сохранности оборудования. Поэтому несимметрия должна быть устранена как можно быстрее. На быстродействие релейной защиты при неполнофазных режимах значительное влияние имеет режим работы нейтрали сети.

Различают несколько режимов работы нейтрали: изолированная, глухозаземленная и эффективно заземленная. У каждого режима есть свои достоинства и недостатки. В сетях напряжением до 35 кВ включительно применяют изолированную нейтраль. Это означает, что средняя точка обмоток ВН трансформатора не соединена с землей.

Однофазное замыкание при такой системе электроснабжения на землю, не приводит к аварийному отключению поврежденной линии, так как ток замыкания на землю довольно незначителен, его величина обусловлена только емкостью двух неповрежденных фаз относительно земли. Ток однофазного замыкания на землю, в сетях до 35 кВ не способен поддерживать горение дуги.

При металлическом замыкании одной фазы («полная земля»), напряжение на двух других возрастает до линейного, но электроснабжение потребителей сохраняется по двум оставшимся фазам. Для сохранности трансформаторов при таких режимах работы, изоляцию его нейтрали выполняют на класс напряжения соответствующий изоляции линейных вводов.

При значительных емкостных токах линий до 35 кВ, применяют дугогасящие катушки, подключаемые к нейтрали трансформаторов. Гашение дуги обеспечивается индуктивностью катушки, которая компенсирует емкостный ток замыкания на землю.

Системой электроснабжения с эффективно заземленной нейтралью считается сеть, в которой заземлена часть нейтральных обмоток силовых трансформаторов. Однофазное короткое замыкание, в таких сетях, приводит к отключению поврежденного участка.

Ток короткого замыкания проходит от места повреждения до ближайших заземленных нейтралей трансформаторов по земле, распределяясь в соответствии с сопротивлением петли фаза – ноль. К трансформаторам, нейтрали которого не заземлены, ток короткого замыкания (в дальнейшем - КЗ) не протекает.

Учитывая тот факт, что на все виды повреждений в электрических сетях, 80 % повреждений приходится на однофазные КЗ, и тот факт, что близкие однофазные КЗ. имеют значительные величины токов, их влияние стараются ограничить.

Для этого часть нейтралей в сети оставляют незаземленной, увеличивая тем самым сопротивление петли замыкания и, ограничивая однофазные токи КЗ. Общий баланс заземленных и незаземленных нейтралей рассчитывается исходя из условий селективной работы устройств РЗА и ограничения токов КЗ.

Кроме того, важным условием при выборе точек заземления, является условие ограничения перенапряжения на нейтральных обмотках при несимметричных повреждениях. На силовом оборудовании класс изоляции нейтралей как правило, принимают на один класс напряжения ниже номинального напряжения обмоток ВН. Такая практика позволяет сэкономить на изоляции и габаритах оборудования, что дает высокий экономический эффект.

Однако с другой стороны, сниженный уровень изоляции нейтрали ведет к необходимости применения оборудования, которое бы ограничивало перенапряжения и токи в нулевом выводе. В качестве защиты от кратковременных перенапряжений могут применяться ограничители перенапряжений, для ограничения токов применяются токоограничивающие реакторы и конденсаторы.

В режиме глухого заземления работают сети с бытовым потребителем. При таком режиме работы нейтрали средняя точка обмоток НН трансформатора присоединяется к заземляющему контуру. В распределительных щитках жилых домов, корпус щитков также присоединяется к заземляющему контуру.

Так, в каждую квартиру или дом “заходит” два провода: фазный и нулевой – обеспечивая тем самым потребителя напряжением 220 В. При повреждении изоляции фазного провода, и прикосновении его к заземленным конструкциям, происходит немедленное отключение поврежденного участка сети. Бетонные стены и полы в многоквартирных домах, также имеют потенциал земли.

Ток КЗ имеет достаточные значения для срабатывания защитной коммутационной аппаратуры. В последнее время, для повышения уровня электробезопасности, помимо рабочего нуля, в жилые помещения заводят и проводник защитное заземление, которое подключается к корпусам электроприборов. Провод защитного заземления в щитке также присоединяется к заземленным конструкциям.

Следует отметить, что автотрансформаторы любого класса напряжения всегда работают с глухозаземленной нейтралью. Изоляция обмоток СН автотрансформатора выполнена, исходя из значения типовой мощности, которая меньше номинальной, а значит и уровень изоляции сниженный. В этом, собственно говоря, и состоит экономическая выгодность автотрансформатора перед трансформатором.

При неполнофазных коммутациях автотрансформаторов, в электромагнитной системе возникают опасные перенапряжения, которые могут быть ограничены глухим заземлением нулевого вывода.

Исходя из всего вышесказанного, можно сделать вывод, что режим работы нейтрали оказывает существенное влияние на надежность электроснабжения и режим работы энергосистемы в целом.

Трансформаторы имеют нейтрали, режим работы или способ рабочего заземления которых обусловлен:

  • требованиями техники безопасности и охраны труда персонала,
  • допустимыми токами замыкания на землю,
  • перенапряжениями, возникающими при замыканиях на землю, а также рабочим напряжением неповрежденных фаз электроустановки по отношению к земле, определяющих уровень изоляции электротехнических устройств,
  • необходимостью обеспечения надежной работы релейной защиты от замыкания на землю,
  • возможностью применения простейших схем электрических сетей.

При однофазном замыкании на землю нарушается симметрия электрической системы: изменяются напряжения фаз относительно земли, появляются токи замыкания на землю, возникают перенапряжения в сетях. Степень изменения симметрии зависит от режима нейтрали.

Выбор режима нейтрали в электрических сетях определяется бесперебойностью электроснабжения потребителей, надёжностью работы, безопасностью обслуживающего персонала и экономичностью электроустановок.

Нейтрали трансформаторов трёхфазных электрических установок, к обмоткам которых подключены электрические сети, могут быть заземлены непосредственно, либо через индуктивные или активные сопротивления, либо изолированы от земли.

Если нейтраль обмотки трансформатора присоединена к заземляющему устройству непосредственно или через малое сопротивление, то такая нейтраль называется глухозаземлённой, а сети, подсоединённые к ней, соответственно, - сетями с глухозаземлённой нейтралью.

Нейтраль, не соединённая с заземляющим устройством называется изолированной нейтралью.

Сети, нейтраль которых соединена с заземляющим устройством через реактор (индуктивное сопротивление), компенсирующий ёмкостной ток сети, называются сетями с резонанснозаземлённой либо компенсированной нейтралью.

Сети, нейтраль которых заземлена через резистор (активное сопротивление) называется сеть с резистивнозаземлённой нейтралью.

Электрическая сеть, напряжением выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4 (коэффициент замыкания на землю – отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания) называется сеть с эффективнозаземлённой нейтралью.

Электроустановки в зависимости от мер электробезопасности разделяются на 4 группы:

  • электроустановки напряжением выше 1 кВ в сетях с эффективнозаземленной нейтралью (с большими токами замыкания на землю),
  • электроустановки напряжением выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю),
  • электроустановки напряжением до 1 кВ с глухозаземленной нейтралью,
  • электроустановки напряжением до 1 кВ с изолированной нейтралью.

Режимы нейтрали трехфазных систем

 

 

Напряжение, кВ Режим нейтрали Примечание
0,23 Глухозаземленная нейтраль Требования техники безопасности. Заземляются все корпуса электрооборудования
0,4
0,69 Изолированная нейтраль Для повышения надежности электроснабжения
3,3
 
 
 
 
  Эффективно заземленная нейтраль Для снижения напряжения незамкнутых фаз относительно земли при замыкании одной фазы на землю и снижения расчетного напряжения изоляции
 
 
 
 
 

Системы с глухозаземленной нейтралью - это системы с большим током короткого замыкания на землю. При коротком замыкании место замыкания отключается автоматически. В системах 0,23 кВ и 0,4 кВ это отключение диктуется требованиями техники безопасности. Одновременно заземляются все корпуса оборудования.

Системы 110 и 220 кВ и выше выполняются с эффективно заземленной нейтралью. При коротком замыкании место замыкания также отключается автоматически. Здесь заземление нейтрали приводит к снижению расчетного напряжения изоляции. Оно равно фазному напряжению неповрежденных фаз относительно земли. Для ограничения величины токов короткого замыкания на землю заземляются не все нейтрали трансформаторов (эффективное заземление).

Режимы нейтрали трехфазных систем: а - заземленная нейтраль, б - изолированная нейтраль

Система с изолированной нейтралью применяется для повышения надежности электроснабжения. Характеризуется тем, что при замыкании одной фазы на землю возрастает напряжение фазных проводов относительно земли до линейного напряжения, и симметрия напряжений нарушается. Между линией и нейтралью протекает емкостной ток. Если он меньше 5А, то допускается продолжение работы до 2 ч для турбогенераторов мощностью до 150 МВт и для гидрогенераторов - до 50 МВт. Если установлено, что замыкание произошло не в обмотке генератора, а в сети, то допускается работа в течение 6 ч.

Сети от 1 до 10 кВ — это сети генераторного напряжения электрических станций и местные распределительные сети. При замыкании на землю одной фазы в такой системе напряжение неповрежденных фаз относительно земли возрастает до величины линейного напряжения. Поэтому изоляция должна быть рассчитана на это напряжение.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-04-06 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: