Соотношение между экспозиционной дозой и поглощенной дозой.




Поскольку при одной и той же энергии гамма-квантов и частиц в 1 г биологической ткани, разной по химическому составу, поглощается различное количество энергии, поглощенную в тканях дозу измеряют в радах расчетным путем по формуле:

Dпогл=Х·fk

fk – переходнойкоэффициент, значение которого зависит от энергии излучения и от рода поглощающей ткани (атомного номера и плотности).

Если в воздухе доза излучения в 1 Р энергетически эквивалентна 88 эрг / г, то поглощенная энергия для этой среды составит 88:100 = 0,88 рад. Таким образом, для воздуха поглощенная доза, равная 0,88 рад, соответствует экспозиционной дозе в 1 Р. Переходный коэффициент обычно определяют опытным путем. Для воды и мягких тканей коэффициент f тк округленно принят за единицу (фактически он составляет 0,93). Следовательно, поглощенная доза в радах численно почти равна соответствующей экспозиционной дозе в рентгенах. Для костной ткани коэффициент f к=2…5.

35. Группы радиотоксичности радионуклидов.

1. Группа А – радионуклиды особо высокой радиотоксичности. К данной группе относятся изотопы: свинец-210, полоний-210, радий-226, торий-230, уран-232 и др. Среднегодовая концентрация для них в воде установлена в пределах 10–8–10–10 Ки/л.

2. Группа Б – радионуклиды с высокой радиотоксичностью, для которых среднегодовая допустимая концентрация равна 10–7–10–9 Ки/л. Сюда относятся изотопы: рутений-106, йод-131, висмут-210, торий-234, плутоний-241 и др. К этой же группе относится стронций-90, для которого указанная концентрация равна 4*10–10.

3. Группа В – радионуклиды со средней радиотоксичностью. Для них установлена концентрация в 10–7–10–8 Ки/л. В эту группу включены изотопы: натрий-22, железо-59, кальций-45, золото-196, сера-35, хлор-36 и др.

4. Группа Г – радионуклиды с наименьшей радиотоксичностью. Среднегодовая концентрация в воде составляет 10–7–10–6 Ки/л. В группу входят следующие изотопы: бериллий-7, углерод-14, фтор-18, медь-64 и др.

5. Группа Д – тритий и его химические соединения. Допустимая концентрация трития в воде составляет 3,2*10–6 Ки/л.

 

 

56. Особенности проведения ветеринарных мероприятий в зонах радиоактивного загрязнения.

В период выпадений радиоактивных осадков в первую очередь необходимо провести мероприятия, направленные на снижение дозовых нагрузок на человека, а затем на сохранение поголовья сельскохозяйственных животных и их продуктивности. Для этого людей укрывают в убежищах, подвалах, подпольях или в жилых закрытых помещениях. Длительность непрерывного пребывания людей в укрытиях должна быть не менее 4-6 суток; при этом особенно опасны первые двое суток, когда еще не распались короткоживущие радионуклиды.

Животных переводят на стойловое, безвыгульное содержание в помещения с наименьшим радиоактивным загрязнением. Продолжительность такого содержания определяется конкретной радиационной обстановкой. Животных кормят кормами из существующих запасов, а также привезенными с чистой территории. Из рациона исключают корма, загрязненные выше допустимого уровня. При ограниченном запасе чистых кормов можно уменьшить рацион до предела, позволяющего сохранить поголовье в течение критического периода. Если не удается организовать регулярную дойку."актирующих животных, то следует сократить раздачу сочных кормов, а подсосный молодняк целесообразно подсадить к маткам. В зимних условиях рекомендуют концентратный тип кормления и минимальное использование сенного рациона из естественных трав.

К подстилке для животных всех видов предъявляют те же требования по уровню радиоактивного загрязнения, что и к кормам.

В первые 4-6 нед. после выпадения радиоактивных осадков особую опасность представляют радиоизотопы йода, и прежде всего 131I. Эти радионуклиды — основной источник загрязнения кормов и молока животных. В первый период после аварии на ЧАЭС до 50 % радиоактивности приходилось на радиоизотопы йода. Период «йодной опасности» продолжался в пределах 2 мес. после аварии. В отдаленные сроки биологическую опасность стали представлять долгоживущие изотопы, главным образом 137Сs и 90Sr.

Учитывая резко выраженную органотропность щитовидной железы к накоплению радиоактивных изотопов йода, для защиты ее рекомендуют в первые недели давать всем животным препараты, блокирующие щитовидную железу, в частности йодистые, а также вводить в рацион содержащие тиоцианат кормовые культуры из семейства крестоцветных (капусту, брюкву, рапс). Лактирующим коровам ежедневно дают препарат КI в дозе 10 г на голову, а козам по 1 г. Введение в рацион животных КI позволяет снизить выделение радиоактивного йода с молоком и его содержание в щитовидной железе животных. Это означает, что обогащение рациона животных стабильным йодом — не только прием ограничения поступления радионуклида в молоко, но и мера профилактики радиационного поражения.

Кроме того, выделение с молоком радиоактивных изотопов йода можно снизить в 2 раза, если включить в рацион дойных и беременных животных наиболее «чистые» по радиоактивности корма, состоящие из сеяных злаковых трав, корнеклубнеплодов, зерна, защищенных от непосредственного загрязнения радиоактивными осадками. Зерно кукурузы, гороха/ бобов, люпина можно очистить от радиоактивного загрязнения путем удаления пленок или створок.

При недостатке «чистых» кормов мясному скоту скармливают радиоактивный корм или выпасают на пастбище с наименьшей загрязненностью. Но на заключительных стадиях откорма, за 1-4 мес. до убоя, животных переводят на «чистые» корма. Методики прижизненного определения содержания радионуклидов в мышечной ткани животных в условиях хозяйства позволяют достаточно точно определить продолжительность очистки и пригодность получаемого мяса в пищу.

При скармливании животным загрязненных кормов большое количество радионуклидов выделяется с испражнениями, поэтому следует проводить своевременную и тщательную уборку помещений.

85. Использование радионуклидов в качестве индикаторов (меченых атомов)

Список используемой литературы.

В настоящее время в биологии, биохимии и физиологии в качестве веществ, позволяющих проводить исследования на молекулярном уровне, широко используют радиоактивные изотопы. Они позволили изучать перемещения тел субмикроскопически малых размеров, а также отдельных молекул, атомов, ионов среди себе подобных в организме, без нарушения его нормальной жизнедеятельности. Предложено несколько методов исследования.

Радиоиндикационный метод (метод меченых атомов) основан на использовании химических соединений, в структуру которых включены в качестве метки радиоактивные элементы. В биологических исследованиях обычно применяют радиоактивные изотопы элементов, входящих в состав организма и участвующих в его обмене веществ – 3Н, 11С, 24Na, 32Р, 35S, 42К, 45Са, 51Сг,59Fe, 125I, 131I и др. Введенные в организм радионуклиды ведут себя в биологических системах так же, как их стабильные изотопы. Это обстоятельство позволяет проследить судьбу не только радиоактивных изотопов, но и различных меченых органических и неорганических соединений и контролировать превращение их в процессе обмена.

Большим достоинством данного метода является его высокая чувствительность, что позволяет использовать в исследованиях ничтожно малые количества (в весовом отношении) меченого соединения, которые не могут оказать влияния и изменить нормальное течение жизненных процессов. Так, если обычными аналитическими методами удается определить изотопы массой 10-6 г, то современные радиометрические приборы позволяют измерять радиоактивные изотопы, масса которых составляет 10–18–10–20 г. Применение метода радиоактивных индикаторов в изучении различных биохимических и физиологических процессов позволило описывать их на языке формул и математических уравнений, т. е. перейти от качественного описания процессов к их точному количественному выражению.

Контроль за распределением и депонированием радионуклидов в различных органах может осуществляться внешней радиометрией подопытных животных (например, регистрация гамма-излучения 131I в щитовидной железе) или соответственно подготовленных биоматериалов (кровь, ткань органов, моча, кал и др.). Широко применяют для этих целей метод авторадиографии.

Радиоавтография – метод получения фотографических изображений в результате действия на фотоэмульсию излучения радиоактивных элементов, находящихся в исследуемом объекте. Впервые для изучения животных организмов авторадиография была применена русским ученым Е. С. Лондоном в 1904. 3a последние три десятилетия благодаря разработке и применению специальных ядерных эмульсий методика авторадиографии значительно усовершенствована и с ее помощью были достигнуты большие успехи в изучении обменных процессов, а также в исследовании распределения и локализации радиоактивных веществ в клетках и тканях животных и растений.

Авторадиографию делят на макроавторадиографию и микроавторадиографию. Макроавторадиография (контактная, контрастная) дает картину распределения радиоактивных изотопов в макроструктурах биологического объекта (количественную оценку концентрации радиоизотопа), по которой можно судить о характере обмена и органотропности радионуклида. Микроавторадиография (гистоавторадиография) позволяет изучать внутриклеточную локализацию радиоактивного вещества, а также клеточные структуры и сложные биохимические процессы в них (синтез белков, ферментов и т.д.).

Сущность метода авторадиографических исследований сводится к следующему:

а) к предварительному введению подопытному животному того или иного количества радиоактивного изотопа;

б) взятию у него тех или иных органов и изготовленных из них препаратов (гистосрезы, шлифы, крови и т.д.) для авторадиографии;

в) созданию в течение определенного времени тесного контакта между изготовленным препаратом, содержащим радиоактивный элемент, и фотоэмульсией;

г) проявлению и фиксации фотоматериала, как это делается в обычной фотографии.

В качестве фотоматериала для макрорадиоавтографии используют высокочувствительные рентгеновские и фотографические пленки, для гисторадиографии – специальные жидкие и съемные ядерные эмульсии (тип «Р», «К», «МР» и др.)» которыми покрывают исследуемые гистологические препараты.

Радиоавтографы представляют собой скопление черных зерен восстановленного серебра фотоэмульсии, указывающее на место расположения радиоактивного вещества в исследуемом материале.

Макрорадиоавтографы анализируют визуально, а при количественной оценке на радиоактивность проводят денситометрию оптической плотности почернения фотоэмульсии радиоавтограмм в сравнении с плотностью почернения фотоэмульсии источника излучения известной радиоактивности.

Гисторадиоавтографы изучают под микроскопом одновременно с гистологическим препаратом. При количественной оценке их подсчитывают зерна восстановленного серебра или треки альфа- или бета-частиц в эмульсии под большим увеличением микроскопа с помощью окуляр-микрометра с сеткой.

А.Д. Белов (1959) разработал методику «двойных радиоавтографов», которая в отличие от существующих методик позволяет получить раздельно радиоавтограммы от двух радиоактивных изотопов, одновременно находящихся в одном и том же исследуемом объекте. Эта методика основана на учете различия энергии излучения и продолжительности «жизни» изотопов. Так, при изучении фосфорно-кальциевого обмена в костях с помощью 32Р и 45Са можно получить раздельно радиоавтографы на указанные изотопы при одновременном их введении подопытному животному. Учитывая сравнительно высокую энергию излучения и малый период полураспада 32Р, получают вначале радиоавтограф на 32Р. Для этого между исследуемым объектом и фотоэмульсией помещают фильтр, поглощающий мягкое бета-излучение 45Са. Радиоавтограф на Са получают после распада 32Р.

 

Список используемой литературы.

1. Белов А.Д., Киришин В.А. «Ветеринарная радиобиология». – М., Агропромиздат, 1987.

2. Анненков Б.М., Юдинцева Е.В. Основы сельскохозяйственной радиологии» - М., В.О. Агропромиздат, 1991.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: