Магнитное поле Земли и последствие его возмущений




Земля в целом представляет собой огромный шаровой магнит. Человечество начало использовать магнитное поле Земли давно. Уже в начале XII—XIII вв. получает широкое распространение в мореходстве компас. Однако в те времена (как сказано и оспорено выше) считалось, что стрелку компаса ориентирует Полярная звезда и её магнетизм. Предположение о существовании магнитного поля Земли впервые высказал в 1600 г. английский естествоиспытатель Гильберт.

В любой точке пространства, окружающего Землю, и на её поверхности обнаруживается действие магнитных сил. Иными словами, в пространстве, окружающем Землю, создаётся магнитное поле, силовые линии которого изображены на рис.3.

Магнитные и географические полюса Земли не совпадают друг с другом. Северный магнитный полюс N лежит в южном полушарии, вблизи берегов Антарктиды, а южный магнитный полюс S находится в Северном полушарии, вблизи северного берега острова Виктория (Канада). Оба полюса непрерывно перемещаются (дрейфуют) на земной поверхности со скоростью около 5 за год из-за переменности порождающих магнитное поле процессов. Кроме того, ось магнитного поля не проходит через центр Земли, а отстаёт от него на 430 км. Магнитное поле Земли не симметрично. Благодаря тому, что ось магнитного поля проходит всего под углом в 11,5 градусов к оси вращения планеты, мы можем пользоваться компасом.

Основная часть магнитного поля Земли, по современным воззрениям, имеет внутриземное происхождение. Магнитное поле Земли создаётся её ядром. Внешнее ядро Земли жидкое и металлическое. Металл – проводящее ток вещество, и если бы существовали в жидком ядре постоянные течения, то соответствующий электрический ток создавал бы магнитное поле. Благодаря вращению Земли, такие течения в ядре существуют, т.к. Земля в некотором приближении является магнитным диполем, т.е. своеобразным магнитом с двумя полюсами: южным и северным.

Незначительная часть магнитного поля (около 1%) имеет внеземное происхождение. Возникновение этой части приписывают электрическим токам, текущим в проводящих слоях ионосферы и поверхности Земли. Эта часть магнитного поля Земли подвержена слабому изменению со временем, которое называется вековой вариацией. Причины существования электрических токов в вековой вариации неизвестны.

В идеальном и гипотетическом предположении, в котором Земля была бы одинока в космическом пространстве, силовые линии магнитного поля планеты располагались таким же образом, как и силовые линии обычного магнита из школьного учебника физики, т.е. в виде симметричных дуг, протянувшихся от южного полюса к северному. Плотность линий (напряжённость магнитного поля) падала бы с удалением от планеты. На деле, магнитное поле Земли находится во взаимодействии с магнитными полями Солнца, планет и потоков заряженных частиц, испускаемых в изобилии Солнцем. Если влиянием самого Солнца и тем более планет из-за удалённости можно пренебречь, то с потоками частиц, иначе – солнечным ветром, так не поступишь. Солнечный ветер представляет собой потоки мчащихся со скоростью около 500 км/с частиц, испускаемых солнечной атмосферой. В моменты солнечных вспышек, а также в периоды образования на Солнце группы больших пятен, резко возрастает число свободных электронов, которые бомбардируют атмосферу Земли. Это приводит к возмущению токов текущих в ионосфере Земли и, благодаря этому, происходит изменение магнитного поля Земли. Возникают магнитные бури. Такие потоки порождают сильное магнитное поле, которое и взаимодействует с полем Земли, сильно деформируя его. Благодаря своему магнитному полю, Земля удерживает в так называемых радиационных поясах захваченные частицы солнечного ветра, не позволяя им проходить в атмосферу Земли и тем более к поверхности. Частицы солнечного ветра были бы очень вредны для всего живого. При взаимодействии упоминавшихся полей образуется граница, по одну сторону которой находится возмущённое (подвергшееся изменениям из-за внешних влияний) магнитное поле частиц солнечного ветра, по другую – возмущённое поле Земли. Эту границу стоит рассматривать как предел околоземного пространства, границу магнитосферы и атмосферы. Вне этой границы преобладает влияние внешних магнитных полей. В направлении к Солнцу магнитосфера Земли сплюснута под натиском солнечного ветра и простирается всего до 10 радиусов планеты. В противоположном направлении имеет место вытянутость до 1000 радиусов Земли.

Основная часть магнитного поля Земли обнаруживает аномалии в различных районах земной поверхности. Эти аномалии, по-видимому, следует приписать присутствию в земной коре ферромагнитных (о магнитном поле в веществе будет рассказано ниже) масс или различию магнитных свойств горных пород. Поэтому изучение магнитных аномалий имеет практическое значение при исследовании полезных ископаемых.

Существование магнитного поля в любой точке Земли можно установить с помощью магнитной стрелки. Если подвесить магнитную стрелку NS на нити l (рис.2) так, чтобы точка подвеса совпадала с центром тяжести стрелки, то стрелка установится по направлению касательной к силовой линии магнитного поля Земли.

Лет семь назад сильнейшая магнитная буря обрушилась на Землю. Тогда не повезло Канаде, Квебеку. По девятибалльной штормовой шкале буря достигла 8 баллов. В Квебеке вышла из строя энергосистема всего города. И этот случай не единственный. «Вылетали пробки» и в США, и в других странах. А уж о нарушениях радиосвязи и не говорю - это стало притчей во языцех. Не зря славяне называли Солнце Ярилой!

Сначала тем, кто говорил о влиянии магнитных бурь на организм человека, не верили. Над этими учеными смеялись, негодовали, обвиняли в лженауке. Первым был осмеян Чижевский. После него, в 20-е годы нашего века двое французов, Фор и Сарду, также обнаружили зависимость между магнитными бурями и сердечно-сосудистыми заболеваниями. По их выкладкам получалось, что в 85% наблюдаемых мест Франции число сердечно-сосудистых больных увеличивалось в моменты магнитных бурь.

Сердечно – сосудистая и кровеносная система

Во время магнитных бурь наблюдается ухудшение состояния больных, страдающих сердечно-сосудистыми заболеваниями, повышается артериальное давление, ухудтшается коронарное кровообращение. Магнитные бури вызывают в организме человека, страдающего заболеваниями сердечно-сосудистой системы, обострения (инфаркт миокарда, инсульт, гипертонический криз и т.д.). Сейчас, когда мы заранее узнаем время наступления магнитных бурь, то можем заранее предупредить эти обострения. Чтобы уберечь организм человека от ухудшения здоровья, нужно еще до наступления неблагоприятной погоды любыми способами укреплять здоровье. Это достигается не только медикаментозными средствами.

Органы дыхания

Магнитные бури оказывают неблагоприятное влияние на больных, страдающих заболеваниями органов дыхания. Под действием магнитных бурь изменяются биоритмы. Состояние одних больных ухудшается до магнитных бурь, а других - после. Приспосабливаемость таких больных к условиям магнитных бурь очень мала.

Центральная нервная система

Во время магнитных бурь наблюдается ухудшение состояния людей, страдающих психическими заболеваниями. Увеличивается число несчастных случаев и травматизма на транспорте. Центральная и вегетативная нервные системы очень чувствительны к геофизическим явлениям.

Другие заболевания

Чем дальше на Север, тем интенсивнее возмущенность магнитного поля во время магнитных бурь. И чем дальше на Север, тем сильнее влияние на состояние здоровья людей в период магнитных бурь. Возрастает число преждевременных родов, токсикозов, в этот период наибольшая заболеваемость раком, обострение глазных болезней.

Главное правило для того, чтобы сохранить здоровье состоит в том, чтобы повышать резервные возможности организма. Для того чтобы не реагировать на метеоусловия, необходимо постоянно укреплять здоровье, для чего пользоваться не только медикаментозными средствами, но заниматься физкультурой, правильно организовать режим работы и отдыха, питание.

 

Электромагнетизм

Открытие электромагнетизма

В XVIII в. электричество и магнетизм считались хотя и похожими, но все же имеющими различную природу явлениями. Правда, были известны некоторые факты, указывающие на существование как будто бы связи между магнетизмом и электричеством, например намагничение железных предметов в результате ударов молнии. Больше того, Франклину удалось как будто бы намагнитить кусок железа с помощью разряда лейденской банки. Все-таки известные факты не позволяли уверенно утверждать, что между электрическими и магнитными явлениями существует связь.

Такую связь впервые обнаружил датский физик Ханс Кристиан Эрстед (1777 - 1851) в 1820 г. Он открыл действие электрического тока на магнитную стрелку.

Интересна история этого открытия. Идею о связи между электрическими и магнитными явлениями Эрстед высказал еще в первом десятилетии XIX в. Он полагал, что в явлениях природы, несмотря на все их многообразие, имеется единство, что все они связаны между собой. Руководствуясь этой идеей, он поставил перед собой задачу выяснить на опыте, в чем эта связь проявляется.

Эрстед открыл, что если над проводником, направленным вдоль земного меридиана, поместить магнитную стрелку, которая показывает на север, и по проводнику пропустить электрический ток, то стрелка отклоняется на некоторый угол.

После того как Эрстед опубликовал свое открытие, многие физики занялись исследованием этого нового явления. Французские ученые Био и Савар постарались установить закон действия тока на магнитную стрелку, т. е. определить, как и от чего зависит сила, действующая на магнитную стрелку, когда она помещена около электрического тока. Они установили, что сила, действующая на магнитный полюс (на конец длинного магнита) со стороны прямолинейного проводника с током, направлена перпендикулярно к кратчайшему расстоянию от полюса до проводника и модуль ее обратно пропорционален этому расстоянию.

Познакомившись с работой Био и Савара, Лаплас заметил, что для расчета «магнитной» силы, т. е., говоря современным языком, напряженности магнитного поля, полезно рассматривать действие очень малых отрезков проводника с током на магнитный полюс. Из измерений Био и Савара следовало, что если ввести понятие элемента проводника ∆l, то сила ∆F, действующая со стороны этого элемента на полюс магнита, будет пропорциональна ∆F ~ (∆l/r2)sinθ -, где ∆l - элемент проводника, θ - угол, образованный этим элементом и прямой, проведенной из элемента ∆l в точку, в которой определяется сила, а r - кратчайшее расстояние от магнитного полюса до линии, являющейся продолжением элемента проводника.

 
 

После того как было введено понятие силы тока и напряженности магнитного поля, этот закон стали записывать так:

где ∆H - напряженность магнитного поля, I - сила тока, а k - коэффициент, зависящий от выбора единиц, в которых измеряются эти величины. В международной системе единиц СИ этот коэффициент равен 1/4π.

Новый важнейший шаг в исследовании электромагнетизма был сделан французским ученым Андре Мари Ампером (1775 - 1836) в 1820г.

Раздумывая над открытием Эрстеда, Ампер пришел к совершенно новым идеям. Он предположил, что магнитные явления вызываются взаимодействием электрических токов. Каждый магнит представляет собой систему замкнутых электрических токов, плоскости которых перпендикулярны оси магнита. Взаимодействие магнитов, их притяжение и отталкивание объясняются притяжением и отталкиванием, существующими между токами. 3емной магнетизм также обусловлен электрическими токами, которые протекают в земном шаре.

Эта гипотеза требовала, конечно, опытного подтверждения. И Ампер проделал целую серию опытов для ее обоснования.

Первые опыты Ампера заключались в обнаружении сил, действующих между проводниками, по которым течет электрический ток. Опыты показали, что два прямолинейных проводника с током, расположенные параллельно друг другу, притягиваются, если токи в них имеют одинаковое направление, и отталкиваются, если направление токов противоположно.

Ампер показал также, что виток с током и спиралевидный проводник с током (соленоид) ведут себя как магниты. Два таких проводника притягиваются и отталкиваются подобно двум магнитным стрелкам.

Свои первые сообщения о результатах опытов Ампер сделал на заседаниях Парижской академии наук осенью 1820 г. После этого он занялся разработкой теории взаимодействия проводников, по которым течет электрический ток.

Ампер решил в основу теории взаимодействия токов положить закон взаимодействия между элементами токов. Нужно отметить, что Ампер говорил уже не просто о взаимодействии элементов проводников, как Био и Савар, а о взаимодействии элементов токов, так как к тому времени уже возникло понятие силы тока. И это понятие ввел сам Ампер.

Следуя взглядам того времени о подобии элементарных сил силам тяготения, Ампер предположил, что сила взаимодействии между элементами двух токов будет зависеть от расстояния между ними и должна быть направлена по прямой, соединяющей эти два элемента.

Проведя большое число опытов по определению взаимодействия токов в проводниках различной формы и по-разному расположенных друг относительно друга, Ампер, в конце концов, определил искомую силу. Подобно силе тяготения она оказалась обратно пропорциональной квадрату расстоянии между элементами электрических токов. Но в отличие от силы тяготения ее значение зависело еще и от относительной ориентации элементов токов.

Формулу, которую получил Ампер, я приводить не буду. Она оказалась неверной, потому что он заранее предположил, что сила взаимодействия между элементами токов должна быть направлена по прямой, соединяющей эти элементы. На самом же деле эта сила направлена под углом к этой прямой.

Однако вследствие того, что Ампер проводил опыты с замкнутыми постоянными токами, он получал при расчетах по своей формуле правильные результаты. Оказывается, что для замкнутых проводников формула Ампера приводит к тем же результатам, что и исправленная впоследствии формула, выражающая силу взаимодействия между элементами токов, которая по-прежнему носит название закона Ампера.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-04-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: