Сила тяжести
Силу, с которой Земля притягивает к себе тела, называют силой тяжести. Сила тяжести существует на всех планетах Солнечной системы. Есть она и на Луне — естественном спутнике Земли. Но на Луне она намного меньше, чем на Земле. Это объясняется тем, что масса Земли значительно больше массы Луны. Вот почему движения космонавтов на поверхности Луны напоминали плавные прыжки.
Сила тяжести зависит и от массы самого тела. Она будет больше у того тела, масса которого больше. Наверняка, знакомясь в школе с характеристиками тел, вы сравнивали железный и деревянный шарики одинаковых размеров. Если такие шарики бросить с одинаковой высоты на влажный песок, то железный шарик оставит в нем большую вмятину, чем деревянный. Произойдет это из-за того, что сила тяжести в примере с железным шариком будет больше. Причиной этого является большая масса железного шарика по сравнению с деревянным.
Значение в природе[править | править код]
Сила тяжести играет важную роль в процессах эволюции звёзд. Для звёзд, находящихся на этапе главной последовательности своей эволюции, сила тяжести является одним из важных факторов, обеспечивающих условия, необходимые для термоядерного синтеза. На заключительных этапах эволюции звёзд, в процессе их коллапса, благодаря силе тяжести, не скомпенсированной силами внутреннего давления, звёзды превращаются в нейтронные звёзды или чёрные дыры.
Сила тяжести очень важна для формирования структуры внутреннего строения Земли и других планет и тектонической эволюции её поверхности[27]. Чем больше сила тяжести, тем большая масса метеоритного материала выпадает на единицу её поверхности[28]. За время существования Земли её масса существенно увеличилась благодаря силе тяжести: ежегодно на Землю оседает 30-40 млн. тонн метеоритного вещества, в основном в виде пыли, что значительно превышает рассеяние лёгких компонентов верхней атмосферы Земли в космосе[29].
|
Без потенциальной энергии силы тяжести, непрерывно переходящей в кинетическую, круговорот вещества и энергии на Земле был бы невозможен[30].
Сила тяжести играет очень важную роль для жизни на Земле[31]. Только благодаря ей у Земли есть атмосфера. Вследствие силы тяжести, действующей на воздух, существует атмосферное давление[32].
У всех живых организмов с нервной системой есть рецепторы, определяющие величину и направление силы тяжести и служащие для ориентировки в пространстве. У позвоночных организмов, в том числе человека, величину и направление силы тяжести определяет вестибулярный аппарат[33].
Наличие силы тяжести привело к возникновению у всех многоклеточных наземных организмов прочных скелетов, необходимых для её преодоления. У водных живых организмов силу тяжести уравновешивает гидростатическая сила[34].
Сила упругости и сила трения
Мы уже познакомились с силами упругости и трения качественно, теперь рассмотрим их количественно, с привлечением формул.
Сила упругости возникает в любом теле, если менять его форму и/или размеры. Например, сжимая пластилин или глину, мы чувствуем их противодействие – это сила упругости. Она не зависит от того, насколько пластилин или глина уже сжаты. Иное дело, если мы возьмём резиновый шарик либо стальную пружину. Чем больше мы будем их сжимать или растягивать, тем большая сила упругости будет возникать (см. рисунок).
|
Продолжим опыт с гирями и динамометром, рассмотренный в предыдущем параграфе. С помощью линейки будем измерять удлинение пружины Δl, равное разности её конечной и начальной длины: l – l0. Мы обнаружим, что возникающая сила упругости прямо пропорциональна модулю изменения длины пружины:
Fупр – сила упругости пружины, Н |Δl| – модуль удлинения пружины, м k – коэффициент жёсткости, Н/м |
Коэффициент k характеризует жёсткость пружины. Поясним его смысл. Пусть, например, мы растянули пружину динамометра на 5 см, и в ней возникла сила упругости 2 Н. Тогда жёсткость этой пружины равна: k = 2 Н: 0,05 м = 40 Н/м. Допустим теперь, что мы взяли пружину из более толстой проволки. Приложив к ней такую же силу 2 Н, мы заметим меньшее растяжение, например 1 см. Тогда жёсткость такой пружины будет больше: k = 2 Н: 0,01 м = 200 Н/м.
Более углублённо мы рассмотрим силу упругости в 9 классе.
Как вы уже знаете (см. § 3-б), сила трения бывает двух видов – трения скольжения и трения покоя. При участии жидкостей или газов сила трения покоя всегда равна нулю, а вместо термина «сила трения скольжения» чаще употребляют термин «сила сопротивления движению». Формулы, описывающие трение с участием жидкостей и газов, сложны, поэтому мы рассмотрим только формулу для силы трения скольжения твёрдого тела по поверхности другого твёрдого тела.
Проделаем опыт. Деревянный брусок весом 2 Н будем равномерно тянуть по горизонтальной доске, измеряя силу трения. Сверху на брусок будем ставить грузики по 1 Н, увеличивающие вес бруска. Результаты опыта занесём в таблицу:
|
Количество грузиков, шт. | – | |||
Вес бруска с грузиками | 2 Н | 3 Н | 4 Н | 5 Н |
Сила трения скольжения | 0,6 Н | 0,9 Н | 1,2 Н | 1,5 Н |
Из сравнения нижних пар значений двух сил видно, что возникающая сила трения скольжения пропорциональна силе давления на опору (в нашем случае – действующему на доску весу бруска и грузиков). Эта закономерность выражается формулой:
Fтр – сила трения скольжения, Н N – сила давления на опору, Н μ – коэффициент сухого трения |
Взяв любую пару значений сил, мы подсчитаем коэффициент трения скол ьжения деревянного бруска по деревянной доске в нашем опыте. Например, μ = 0,6 Н: 2 Н = 0,9 Н: 3 Н = 1,2 Н: 4 Н = 1,5 Н: 5 Н = 0,3. То есть μ = 0,3. Этот коэффициент показывает, что сила трения скольжения в нашем опыте составляет 3/10 от силы давления на опору.