Отклонение относительной частоты от вероятности в независимых испытаниях




Рассмотрим старую Задачу. Производится п независимых повторных испытаний (опытов). Вероятность удачи при каждом испытании р, вероятность неудачи – q. (р+q=1). Пусть m – число удач. Требуется найти вероятность того, что в серии из независимых испытаний, расхождение между относительной частотой и теоретической вероятностью , где - заранее заданное число, относительная погрешность, например, не больше, чем (один процент).

В лекции 3 была интегральная формула Лапласа

, (1)

Где . (2)

В нашем случае , тогда .

Итак, (3)

, где Функция Лапласа.

Задача 1

В некотором регионе в результате многолетнего статистического исследования установлена вероятность рождения мальчика . С какой вероятностью можно утверждать, что среди следующей тысячи новорожденных, относительная частота появления мальчика отклонится от соответствующей вероятности не более чем на 0,02?

Решение: используем формулу

По условию:

Таким образом:
– искомая вероятность.

Напоминаю, что значения функции Лапласа можно найти по соответствующей таблице 2 в Гмурмане.

Ответ:

Каков смысл полученного результата? Если рассмотреть достаточно много групп по 1000 новорожденных в каждой, то примерно в 79,6% этих групп доля мальчиков будет находиться в пределах:

Или, умножая все три части на тысячу: от 500 до 540 мальчиков.

Посмотрим на правую часть формулы и проанализируем, как при прочих равных условиях рассматриваемая вероятность зависит от размера выборки?

При росте «эн», дробь будет увеличиваться, а, как вы знаете, . То есть, вероятность отклонения рано или поздно приблизится к единице. И это неудивительно – как неоднократно показано в предыдущих примерах, при росте относительная частота события всё ближе и ближе стремится к вероятности данного события, а значит, при достаточно большом количестве испытаний разница практически достоверно будет не больше наперёд заданного числа .

Наоборот – при уменьшении «эн» дробь тоже будет уменьшаться, следовательно, значение будет приближаться к нулю . Нетрудно понять, что при слишком малой выборке теорема Лапласа работать перестанет. И действительно – ведь все детей в семье могут вообще оказаться девочками. Такое бывает.

Пара задач для самостоятельного решения:

Задача 2

Вероятность выигрыша в лотерею равна 0,3. Сколько билетов должно участвовать в розыгрыше, чтобы с гарантией не меньшей чем γ=99%/, можно было ожидать, что относительная частота выигрыша отклонится от теоретической вероятности не более чем на ?

Решение: используем ту же формулу .

В нашем распоряжении находятся следующие величины:

По условию, требуется найти такое количество билетов , чтобы с вероятностью не меньшей чем разница составила не более чем . Ну, а коль скоро с вероятностью «не меньшей», то задачу следует разрулить через нестрогое неравенство:

Подставляем известные значения:
Делим обе части на два:

По таблице значений функции по известному значению функции находим соответствующий аргумент: . Таким образом:

Возведём обе части в квадрат:

И финальный штрих:

Ответ: для того, чтобы с надёжностью не меньшей чем γ=99% можно было ожидать, что , в розыгрыше должно участвовать не менее 1397844 билетов.

Но это ещё нужно столько продать =) Или же аппетит придётся поубавить. Или пожертвовать точностью, то есть увеличить .

Представим ответ в абсолютных значениях:

То есть, в 99% аналогичных розыгрышей количество выигравших билетов будет заключено в пределах от до .

Кстати, выполним проверку, решив прямую задачу:
, что и требовалось проверить.

Домашнее задание

Задача 1. Проводится некоторый опыт, в котором случайное событие может появиться с вероятностью 0,4. Определить, сколько опытов нужно провести, чтобы с вероятностью большей, чем 0,9 можно было ожидать отклонения относительной частоты появления события от не более чем на 0,05

Задача 2. Решить задачу 1, если в рассмотренной задаче значениене известно.

Задача 3. Гмурман задачник. № 135, 136 разобать.

Задача 5. Отдельные 2 сканированных файла. В задании 3 пункты 2 и 3 можно не делать, задание 4 – на будущее.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-09-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: