КОНТРОЛЬНАЯ РАБОТА
Дисциплина: Основы математического моделирования
социально-экономических процессов
Тема: Область использования теории игр
Выполнила студентка:
1 курса, 3-Б31ГМУ/18 группы
Каменев Михаил Анатольевич
Преподаватель:
Павленков Михаил Николаевич
Дзержинск, 2013
Содержание:
1. Введение…………………………………………………………….……..3
2. Понятие теории игр……………………………………………….……....5
3. Основные положения теории игр…………………………….………….6
4. Форма представления игры…………………..........................................11
5. Фундаментальная проблема в теории игр……….….…………….…...13
6. Применение теории игр для принятия стратегических управленческих решений…………………………………………………………..….…..16
7.Проблемы практического применения в управлении……………….……..20
Список используемой литературы………………………………………….....22
1. Введение
21 век. Век информации, бурно развивающихся информационных технологий, инноваций и технологических новшеств. Но почему именно век информации? Почему информация играет ключевую роль практически во всех процессах, происходящих в обществе? Все очень просто. Информация даёт нам бесценное время, а в некоторых случаях даже возможность его опередить. Ведь ни для кого не секрет, что в жизни часто приходится сталкиваться с задачами, в которых необходимо принимать решения в условиях неопределённости, в условиях отсутствия информации об ответных реакциях на твои действия т. е. возникают ситуации, в которых две (или более) стороны преследуют различные цели, а результаты любого действия каждой из сторон зависят от мероприятий партнёра. Такие ситуации возникают каждый день. Например, при игре в шахматы, шашки, домино и так далее. Несмотря на то, что игры носят в основном развлекательный характер, по природе своей они относятся к конфликтным ситуациям, в которых конфликт уже заложен в цели игры - выигрыш одного из партнёров. При этом, результат каждого хода игрока зависит от ответного хода противника. В экономике конфликтные ситуации встречаются очень часто и имеют разнообразный характер, а количество их настолько велико, что невозможно подсчитать все конфликтные ситуации, возникающие на рынке хотя бы за один день. К конфликтным ситуациям в экономике относятся, например, взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банком и клиентом. Во всех вышеперечисленных примерах конфликтная ситуация порождается различием интересов партнёров и стремлением каждого из них принимать оптимальные решения, которые реализуют поставленные цели в наибольшей степени. При этом каждому приходится считаться не только со своими целями, но и с целями партнёра, и учитывать неизвестные заранее решения, которые эти партнёры будут принимать. Для грамотного решения задач в конфликтных ситуациях необходимы научно обоснованные методы. Такие методы разработаны математической теорией конфликтных ситуаций, которая носит название теорииигр.
|
2. Понятие теории игр
Теория игр представляет из себя сложное многоаспектное понятие, поэтому представляется невозможным привести толкование теории игр, используя лишь одно определение. Рассмотрим три подхода к определению теории игр.
|
1.Теория игр - математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу - в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.
2.Теория игр - это раздел прикладной математики, точнее - исследования операций. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках - социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение теория игр имеет для искусственного интеллекта и кибернетики.
3.Одна из важнейших переменных, от которой зависит успех организации - конкурентоспособность. Очевидно, способность прогнозировать действия конкурентов означает преимущество для любой организации. Теория игр - метод моделирования оценки воздействия принятого решения на конкурентов.
3. Основные положения теории игр
Ознакомимся с основными понятиями теории игр. Математическая модель конфликтной ситуации называется игрой, стороны, участвующие в конфликте - игроками. Чтобы описать игру, необходимо сначала выявить ее участников (игроков). Это условие легко выполнимо, когда речь идет об обычных играх типа шахмат и т.п. Иначе обстоит дело с "рыночными играми". Здесь не всегда просто распознать всех игроков, т.е. действующих или потенциальных конкурентов. Практика показывает, что не обязательно идентифицировать всех игроков, надо обнаружить наиболее важных. Игры охватывают, как правило, несколько периодов, в течение которых игроки предпринимают последовательные или одновременные действия. Выбор и осуществление одного из предусмотренных правилами действий называется ходом игрока. Ходы могут быть личными и случайными. Личный ход - это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре). Случайный ход - это случайно выбранное действие (например, выбор карты из перетасованной колоды). Действия могут быть связаны с ценами, объемами продаж, затратами на научные исследования и разработки и т.д. Периоды, в течение которых игроки делают свои ходы, называются этапами игры. Выбранные на каждом этапе ходы в конечном счете определяют "платежи" (выигрыш или убыток) каждого игрока, которые могут выражаться в материальных ценностях или деньгах. Еще одним понятием данной теории является стратегия игрока. Стратегией игрока называется совокупность правил, определяющих выбор его действия при каждом личном ходе в зависимости от сложившейся ситуации. Обычно в процессе игры при каждом личном ходе игрок делает выбор в зависимости от конкретной ситуации. Однако в принципе возможно, что все решения приняты игроком заранее (в ответ на любую сложившуюся ситуацию). Это означает, что игрок выбрал определённую стратегию, которая может быть задана в виде списка правил или программы. (Так можно осуществить игру с помощью ЭВМ). Иначе говоря, под стратегией понимаются возможные действия, позволяющие игроку на каждом этапе игры выбирать из определенного количества альтернативных вариантов такой ход, который представляется ему "лучшим ответом" на действия других игроков. Относительно концепции стратегии следует заметить, что игрок определяет свои действия не только для этапов, которых фактически достигла конкретная игра, но и для всех ситуаций, включая и те, которые могут и не возникнуть в ходе данной игры. Игра называется парной, если в ней участвуют два игрока, и множественной, если число игроков больше двух. Для каждой формализованной игры вводятся правила, т.е. система условий, определяющая: 1) варианты действий игроков; 2) объём информации каждого игрока о поведении партнёров; 3) выигрыш, к которому приводит каждая совокупность действий. Как правило, выигрыш (или проигрыш) может быть задан количественно; например, можно оценить проигрыш нулём, выигрыш - единицей, а ничью - ½. Игра называется игрой с нулевой суммой, или антагонистической, если выигрыш одного из игроков равен проигрышу другого, т. е. для полного задания игры достаточно указать величину одного из них. Если обозначить а - выигрыш одного из игроков, b - выигрыш другого, то для игры с нулевой суммой b = -а, поэтому достаточно рассматривать, например а. Игра называется конечной, если у каждого игрока имеется конечное число стратегий, и бесконечной - в противном случае. Для того чтобы решить игру, или найти решение игры, следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получать максимальный выигрыш, когда второй придерживается своей стратегии. В то же время второй игрок должен иметь минимальный проигрыш, если первый придерживается своей стратегии. Такие стратегии называются оптимальными. Оптимальные стратегии должны также удовлетворять условию устойчивости, т. е. любому из игроков должно быть невыгодно отказаться от своей стратегии в этой игре. Если игра повторяется достаточно много раз, то игроков может интересовать не выигрыш и проигрыш в каждой конкретной партии, а средний выигрыш (проигрыш) во всех партиях. Целью теории игр является определение оптимальной стратегии для каждого игрока. При выборе оптимальной стратегии естественно предполагать, что оба игрока ведут себя разумно с точки зрения своих интересов.
|
Типы игр:
Кооперативные и некооперативные
Игра называется кооперативной, или коалиционной, если игроки могут объединяться в группы, беря на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни.
Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. В общем случае это неверно. Существуют игры, где коммуникация разрешена, но игроки преследуют личные цели, и наоборот.
Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом.
Гибридные игры включают в себя элементы кооперативных и некооперативных игр. Например, игроки могут образовывать группы, но игра будет вестись в некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с тем стараясь достичь личной выгоды.
Симметричные и несимметричные
А | Б | |
А | 1, 2 | 0, 0 |
Б | 0, 0 | 1, 2 |
Несимметричная игра |
Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут равны, то есть иметь одинаковые платежи. Иначе говоря, если игроки могут поменяться местами и при этом их выигрыши за одни и те же ходы не изменятся. Многие изучаемые игры для двух игроков - симметричные. В частности, таковыми являются: «Дилемма заключённого», «Охота на оленя». В примере справа игра на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так - ведь выигрыш второго игрока при профилях стратегий (А, А) и (Б, Б) будет больше, чем у первого.
С нулевой суммой и с ненулевой суммой
А | Б | |
А | -1, 1 | 3, -3 |
Б | 0, 0 | -2, 2 |
Игра с нулевой суммой |
Игры с нулевой суммой - особая разновидность игр с постоянной суммой, то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо - числа означают платежи игрокам - и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер, где один выигрывает все ставки других; реверси, где захватываются фишки противника; либо банальное воровство.
Многие изучаемые математиками игры, в том числе уже упоминавшаяся «Дилемма заключённого», иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме - это делается введением фиктивного игрока, который «присваивает себе» излишек или восполняет недостаток средств.
Ещё игрой с отличной от нуля суммой является торговля, где каждый участник извлекает выгоду. Сюда также относятся шашки и шахматы; в двух последних игрок может превратить свою рядовую фигуру в более сильную, получив преимущество. Во всех этих случаях сумма игры увеличивается. Широко известным примером, где она уменьшается, является война.
Параллельные и последовательные
В параллельных играх игроки ходят одновременно, или, по крайней мере, они не осведомлены о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических, играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предшествующих действиях других. Эта информация может быть даже не совсем полной, например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других.
Различия в представлении параллельных и последовательных игр рассматривались выше. Первые обычно представляют в нормальной форме, а вторые - в экстенсивной.
С полной или неполной информацией
Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр - с неполной информацией. Например, вся «соль» Дилеммы заключённого заключается в её неполноте.
Примеры игр с полной информацией: шахматы, шашки и другие.
Часто понятие полной информации путают с похожим - совершенной информации. Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно.
Игры с бесконечным числом шагов
Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множеств рассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов.
Задача, которая обычно ставится в этом случае, состоит не в поиске оптимального решения, а в поиске хотя бы выигрышной стратегии.
Дискретные и непрерывные игры
Большинство изучаемых игр дискретны: в них конечное число игроков, ходов, событий, исходов и т. п. Однако эти составляющие могут быть расширены на множество вещественных чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они связаны с какой-то вещественной шкалой (обычно - шкалой времени), хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры находят своё применение в технике и технологиях, физике.
Метаигры
Это такие игры, результатом которых является набор правил для другой игры (называемой целевой или игрой-объектом). Цель метаигр - увеличить полезность выдаваемого набора правил.
4. Форма представления игры
В теории игр наряду с классификацией игр огромную роль играет форма представления игры. Обычно выделяют нормальную, или матричную форму и развернутую, заданную в виде дерева. Эти формы для простой игры представлены на рис. 1а и 1б.
Чтобы установить первую связь со сферой управления, игру можно описать следующим образом. Два предприятия, производящие однородную продукцию, стоят перед выбором. В одном случае они могут закрепиться на рынке благодаря установлению высокой цены, которая обеспечит им среднюю картельную прибыль ПK. При вступлении в жесткую конкурентную борьбу оба получают прибыль ПW. Если один из конкурентов устанавливает высокую цену, а второй - низкую, то последний реализует монопольную прибыль ПM, другой же несет убытки ПG. Подобная ситуация может, например, возникнуть когда обе фирмы должны объявить свою цену, которая впоследствии не может быть пересмотрена.
При отсутствии жестких условий обоим предприятиям выгодно назначить низкую цену. Стратегия "низкой цены" является доминирующей для любой фирмы: вне зависимости от того, какую цену выбирает конкурирующая фирма, самой всегда предпочтительней устанавливать низкую цену. Но в таком случае перед фирмами возникает дилемма, так как прибыль ПK (которая для обоих игроков выше, чем прибыль ПW) не достигается.
Стратегическая комбинация "низкие цены/низкие цены" с соответствующими платежами представляет собой равновесие Нэша, при котором ни одному из игроков невыгодно сепаратно отходить от выбранной стратегии. Подобная концепция равновесия является принципиальной при разрешении стратегических ситуаций, но при определенных обстоятельствах она все же требует усовершенствования.
Что касается указанной выше дилеммы, то ее разрешение зависит, в частности, от оригинальности ходов игроков. Если предприятие имеет возможность пересмотреть свои стратегические переменные (в данном случае цену), то может быть найдено кооперативное решение проблемы даже без жесткого договора между игроками. Интуиция подсказывает, что при многократных контактах игроков появляются возможности добиться приемлемой "компенсации". Так, при известных обстоятельствах нецелесообразно стремиться к краткосрочным высоким прибылям путем ценового демпинга, если в дальнейшем может возникнуть "война цен".
Как отмечалось, оба рисунка характеризуют одну и ту же игру. Предоставление игры в нормальной форме в обычном случае отражает "синхронность". Однако это не означает "одновременность" событий, а указывает на то, что выбор стратегии игроком осуществляется в условиях неведения о выборе стратегии соперником. При развернутой форме такая ситуация выражается через овальное пространство (информационное поле). При отсутствии этого пространства игровая ситуация приобретает иной характер: сначала решение должен бы принимать один игрок, а другой мог бы делать это вслед за ним.
5. Фундаментальная проблема в теории игр
Рассмотрим фундаментальную проблему в теории игр под названием Дилемма заключенного.
Дилемма заключённого - фундаментальная проблема в теории игр, согласно которой игроки не всегда будут сотрудничать друг с другом, даже если это в их интересах. Предполагается, что игрок («заключённый») максимизирует свой собственный выигрыш, не заботясь о выгоде других. Суть проблемы была сформулирована Мерилом Фладом и Мелвином Дрешером в 1950 году. Название дилемме дал математик Альберт Такер.
В дилемме заключённого предательство строго доминирует над сотрудничеством, поэтому единственное возможное равновесие - предательство обоих участников. Проще говоря, неважно, что сделает другой игрок, каждый выиграет больше, если предаст. Поскольку в любой ситуации предать выгоднее, чем сотрудничать, все рациональные игроки выберут предательство.
Ведя себя по отдельности рационально, вместе участники приходят к нерациональному решению: если оба предадут, они получат в сумме меньший выигрыш, чем если бы сотрудничали (единственное равновесие в этой игре не ведёт к Парето-оптимальному решению, т.е. решению, которое не может быть улучшено без ухудшения положения других элементов.). В этом и заключается дилемма.
В повторяющейся дилемме заключённого игра происходит периодически, и каждый игрок может «наказать» другого за несотрудничество ранее. В такой игре сотрудничество может стать равновесием, а стимул предать может перевешиваться угрозой наказания.
Классическая дилемма заключённого
Во всех судебных системах кара за бандитизм (совершение преступлений в составе организованной группы) намного тяжелее, чем за те же преступления, совершённые в одиночку (отсюда альтернативное название - «дилемма бандита»).
Классическая формулировка дилеммы заключённого такова:
Двое преступников, А и Б, попались примерно в одно и то же время на сходных преступлениях. Есть основания полагать, что они действовали по сговору, и полиция, изолировав их друг от друга, предлагает им одну и ту же сделку: если один свидетельствует против другого, а тот хранит молчание, то первый освобождается за помощь следствию, а второй получает максимальный срок лишения свободы (10 лет)(20 лет). Если оба молчат, их деяние проходит по более лёгкой статье, и они приговариваются к 6 месяцам(1 год). Если оба свидетельствуют против друг друга, они получают минимальный срок (по 2 года)(5 лет). Каждый заключённый выбирает, молчать или свидетельствовать против другого. Однако ни один из них не знает точно, что сделает другой. Что произойдёт?
Игру можно представить в виде следующей таблицы:
Заключённый Б хранит молчание | Заключённый Б даёт показания | |
Заключённый А хранит молчание | Оба получают полгода(5 лет). | А получает 10 лет(20 лет), Б освобождается |
Заключённый А даёт показания | А освобождается, Б получает 10 лет тюрьмы(20 лет) | Оба получают 2 года тюрьмы(1 год) |
«Дилемма заключённого» в нормальной форме. |
Дилемма появляется, если предположить, что оба заботятся только о минимизации собственного срока заключения.
Представим рассуждения одного из заключённых. Если партнёр молчит, то лучше его предать и выйти на свободу (иначе - полгода тюрьмы). Если партнёр свидетельствует, то лучше тоже свидетельствовать против него, чтобы получить 2 года (иначе - 10 лет). Стратегия «свидетельствовать» строго доминирует над стратегией «молчать». Аналогично другой заключённый приходит к тому же выводу.
С точки зрения группы (этих двух заключённых) лучше всего сотрудничать друг с другом, хранить молчание и получить по полгода, так как это уменьшит суммарный срок заключения. Любое другое решение будет менее выгодным.
Обобщённая форма
Можно раскрыть скелет игры далее, абстрагировавшись от подтекста заключённых. Обобщённая форма игры часто используется в экспериментальной экономике. Следующие правила дают типичную реализацию игры.
1. В игре - два игрока и банкир. Каждый игрок держит 2 карты: на одной написано «сотрудничать», на другой - «предать» (это стандартная терминология игры). Каждый игрок кладёт одну карту перед банкиром лицом вниз (то есть никто не знает чужого решения, хотя знание чужого решения не влияет на анализ доминирования). Банкир открывает карты и выдаёт выигрыш.
2. Если оба выбрали «сотрудничать», оба получают C. Если один выбрал «предать», другой «сотрудничать» - первый получает D, второй с. Если оба выбрали «предать» - оба получают d.
3. Значения переменных C, D, c, d могут быть любого знака (в примере выше все меньше либо равны 0). Обязательно должно соблюдаться неравенство D > C > d > c, чтобы игра представляла собой «Дилемму заключённого» (ДЗ).
4. Если игра повторяется, то есть играется больше 1 раза подряд, общий выигрыш от сотрудничества должен быть больше суммарного выигрыша в ситуации, когда один предаёт, а другой - нет, то есть 2C > D + c.
Сотрудничать | Предать | |
Сотрудничать | C, C | c, D |
Предать | D, c | d, d |
Каноническая матрица выигрышей «Дилеммы заключённого» |
Эти правила были установлены Дугласом Хофштадтером и образуют каноническое описание типичной дилеммы заключённого.
Похожая, но другая игра
Хофштадтер предположил, что люди проще понимают задачи, как задача дилемма заключенного, если она представлена в виде отдельной игры или процесса торговли. Один из примеров - «обмен закрытыми сумками »:
Два человека встречаются и обмениваются закрытыми сумками, понимая, что одна из них содержит деньги, другая - товар. Каждый игрок может уважать сделку и положить в сумку то, о чём договорились, либо обмануть партнёра, дав пустую сумку.
В этой игре обман всегда будет наилучшим решением, означая также, что рациональные игроки никогда не будут играть в неё, и что рынок обмена закрытыми сумками будет отсутствовать.
Применение теории игр для принятия стратегических управленческих решений
В качестве примеров можно назвать решения по поводу проведения принципиальной ценовой политики, вступления на новые рынки, кооперации и создания совместных предприятий, определения лидеров и исполнителей в области инноваций, вертикальной интеграции и т.д. Положения теории игр в принципе можно использовать для всех видов решений, если на их принятие влияют другие действующие лица. Этими лицами, или игроками, необязательно должны быть рыночные конкуренты; в их роли могут выступать субпоставщики, ведущие клиенты, сотрудники организаций, а также коллеги по работе.
· Инструментарий теории игр особенно целесообразно применять, когда между участниками процесса существуют важные зависимости в области платежей. Ситуация с возможными конкурентами приведена на рис. 2.
· Квадранты 1 и 2 характеризуют ситуацию, когда реакция конкурентов не оказывает существенного влияния на платежи фирмы. Это происходит в тех случаях, когда у конкурента нет мотивации (поле 1) или возможности (поле 2) нанести "ответный удар". Поэтому нет необходимости в детальном анализе стратегии мотивированных действий конкурентов.
Аналогичный вывод следует, хотя и по другой причине, и для ситуации, отражаемой квадрантом 3. Здесь реакция конкурентов могла бы изрядно воздействовать на фирму, но поскольку ее собственные действия не могут сильно повлиять на платежи конкурента, то и не следует опасаться его реакции. В качестве примера можно привести решения о вхождении в рыночную нишу: при определенных обстоятельствах у крупных конкурентов нет оснований реагировать на подобное решение небольшой фирмы.
Лишь ситуация, показанная в квадранте 4 (возможность ответных шагов рыночных партнеров), требует использования положений теории игр. Однако здесь отражены лишь необходимые, но недостаточные условия, чтобы оправдать применение базы теории игр для борьбы с конкурентами. Бывают ситуации, когда одна стратегия безусловно доминирует над всеми другими независимо от того, какие действия предпримет конкурент. Если взять, например, рынок лекарственных препаратов, то для фирмы часто бывает важно первой заявить новый товар на рынке: прибыль "первопроходца" оказывается столь значительной, что всем другим "игрокам" остается только быстрее активизировать инновационную деятельность.
· Тривиальным с позиций теории игр примером "доминирующей стратегии" является решение относительно проникновения на новый рынок. Возьмем предприятие, которое выступает в качестве монополиста на каком-либо рынке (например, IВМ на рынке персональных компьютеров в начале 80-х годов). Другое предприятие, действующее, к примеру, на рынке периферийного оборудования для ЭВМ, обдумывает вопрос о проникновении на рынок персональных компьютеров с переналадкой своего производства. Компания-аутсайдер может принять решение о вступлении или невступлении на рынок. Компания-монополист может отреагировать на появление нового конкурента агрессивно или дружественно. Оба предприятия вступают в двухэтапную игру, в которой первый ход делает компания-аутсайдер. Игровая ситуация с указанием платежей показана в виде дерева на рис.3.
· Та же самая игровая ситуация может быть представлена и в нормальной форме (рис.4).
Здесь обозначены два состояния - "вступление/дружественная реакция" и "невступление/ агрессивная реакция". Очевидно, что второе равновесие несостоятельно. Из развернутой формы следует, что для уже закрепившейся на рынке компании нецелесообразно реагировать агрессивно на появление нового конкурента: при агрессивном поведении теперешний монополист получает 1(платеж), а при дружественном - 3. Компания-аутсайдер к тому же знает, что для монополиста не рационально начинать действия по ее вытеснению, и поэтому она принимает решение о вступлении на рынок. Грозившие потери в размере (-1) компания-аутсайдер не понесет.
Подобное рациональное равновесие характерно для "частично усовершенствованной" игры, которая заведомо исключает абсурдные ходы. Такие равновесные состояния на практике в принципе довольно просто найти. Равновесные конфигурации могут быть выявлены с помощью специального алгоритма из области исследования операций для любой конечной игры. Игрок, принимающий решение, поступает следующим образом: вначале делается выбор "лучшего" хода на последнем этапе игры, затем выбирается "лучший" ход на предшествующем этапе с учетом выбора на последнем этапе и так далее, до тех пор пока не будет достигнут начальный узел дерева игры.
Какую пользу могут извлечь компании из анализа на базе теории игр? Известен, например, случай столкновения интересов компаний IВМ и Telex. В связи с объявлением о подготовительных планах последней к вступлению на рынок состоялось "кризисное" совещание руководства IВМ, на котором были проанализированы мероприятия, направленные на то, чтобы заставить нового конкурента отказаться от намерения проникнуть на новый рынок. Компании Telex, видимо, стало известно об этих мероприятиях. Анализ на базе теории игр показал, что угрозы IВМ из-за высоких затрат безосновательны. Это свидетельствует, что компаниям полезно в обдумывать возможные реакции партнеров по игре. Изолированные хозяйственные расчеты, даже опирающиеся на теорию принятия решений, часто носят, как в изложенной ситуации, ограниченный характер. Так, компания-аутсайдер могла бы и выбрать ход "невступление", если бы предварительный анализ убедил ее в том, что проникновение на рынок вызовет агрессивную реакцию монополиста. В этом случае в соответствии с критерием ожидаемой стоимости разумно выбрать ход "невступление" при вероятности агрессивного ответа 0,5.
· Следующий пример связан с соперничеством компаний в области технологического лидерства. Исходной является ситуация, когда предприятие 1 ранее обладало технологическим превосходством, но в настоящее время располагает меньшими финансовыми ресурсами для научных исследований и разработок (НИР), чем его конкурент. Оба предприятия должны решить вопрос, попытаться ли с помощью крупных капиталовложений добиться доминирующего положения на мировом рынке в соответствующей технологической области. Если оба конкурента вложат в дело крупные средства, то перспективы на успех у предприятия 1 будут лучше, хотя оно и понесет большие финансовые расходы (как и предприятие 2). На рис. 5 эта ситуация представлена платежами с отрицательными значениями.
Для предприятия 1 лучше всего было бы, если бы предприятие 2 отказалось от конкуренции. Его выгода в таком случае составила бы 3 (платежа). С большой вероятностью предприятие 2 выиграло бы соперничество, когда предприятие 1 приняло бы урезанную программу инвестиций, а предприятие 2 - более широкую. Это положение отражено в правом верхнем квадранте матрицы.
Анализ ситуации показывает, что равновесие наступает при высоких затратах на НИР предприятия 2 и низких предприятия 1. При любом другом раскладе у одного из конкурентов появляется резон отклониться от стратегической комбинации: так, для предприятия 1 предпочтителен сокращенный бюджет, если предприятие 2 откажется от участия в соперничестве; в то же время предприятию 2 известно, что при низких затратах конкурента ему выгодно инвестировать в НИР.
Предприятие, имеющее технологическое преимущество, может прибегнуть к анализу ситуации на базе теории игр, чтобы в конечном счете добиться оптимального для себя результата. С помощью определенного сигнала оно должно показать, что готово осуществить крупные затраты на НИР. Если такой сигнал не поступил, то для предприятия 2 ясно, что предприятие 1 выбирает вариант низких затрат.
О достоверности сигнала должны свидетельствовать обязательства предприятия. В данном случае это может быть решение предприятия 1 о закупке новых лабораторий или найме на работу дополнительного научно-исследовательского персонала.
С точки зрения теории игр подобные обязательства равнозначны изменению хода игры: ситуация одновременного принятия решений сменяется ситуацией последовательных ходов. Предприятие 1 твердо демонстрирует намерение пойти на крупные затраты, предприятие 2 регистрирует этот шаг и у него нет больше резона участвовать в соперничестве. Новое равновесие вытекает из расклада "неучастие предприятия 2 " и "высокие затраты на НИР предприятия 1 ".
· К числу известных областей применения методов теории игр следует отнести также ценовую стратегию, создание совместных предприятий, расчет времени разработки новой продукции.
Данная теория является базой подготовки рекомендаций для организационного строительства и проектирования систем стимулирования. Она полезна также для формирования и развития внутрифирменных культур.
Важный вклад в использование теории игр вносят экспериментальные работы. Многие теоретические выкладки отрабатываются в лабораторных условиях, а полученные результаты служат импульсом для практиков. Теоретически было выяснено, при каких условиях двум эгоистически настроенным партнерам целесообразно сотрудничать и добиваться лучших для себя результатов.
Эти знания можно использовать в практике предприятий, чтобы помочь двум фирмам достичь ситуации "выигрыш/выигрыш". Сегодня консультанты с подготовкой в области игр быстро и однозначно выявляют возможности, которыми предприятия могут воспользоваться для заключения стабильных и долгосрочных договоров с клиентами, субпоставщиками, партнерами по разработкам и т.п.