Поворотная система тонарма




Поворот тонарма в горизонтальной и вертикальной плоскости должен происходить свободно, с минимальным трением. С этой целью в высококачественных тонармах применяются прецизионные шариковые подшипники большого диаметра. Cила трения в них весьма мала и составляет 0,5-1% прижимной силы звукоснимателя. Так в тонармах SME серий 300, IV и V для поворота в вертикальной плоскости применяются подшипники диаметром 10мм, а для поворота в горизонтальной плоскости диаметром 17мм. В классических тонармах SME 3009/30012 для снижения трения в вертикальной плоскости вместо шариковых подшипников применены остроконечные призмы, на которые опирается основание трубки тонарма. Оба этих варианта представляют собой т.н. карданную систему подшипников тонарма (gimbal bearing). Горизонтальная ось вращения тонарма должна быть перпендикулярна продольной оси симметрии головки звукоснимателя. Это обеспечивает симметричность контакта игла-канавка при движении вверх и вниз и равномерную нагрузку подшипников.


Тонарм SME 309. Отчетливо видна параллельность горизонтальной оси вращения и линии, на которой расположены отверстия крепления головки.

Примером другого пути решения этих задач является тонарм фирмы Simon Yorke Designs. Здесь применен единственный шарнирный элемент, обеспечивающий свободу движения тонарма в обеих плоскостях и соответствие горизонтальной оси вращения расположению головки (unipivot bearing). Внизу опорной части трубки тонарма сделано коническое углубление, которое опирается на остроконечную ось, как если бы Вы надели наперсток на острие карандаша. С тем отличием, что опорная ось диаметром 9,5мм выполнена из легированной стали, закаленной особым способом, а острие имеет радиус всего один микрон. Боковые качания отсутствуют благодаря специальной пластине прикрепленной к тонарму, через прорезь в которой проходит опорная ось. Чтобы не создавалось дополнительное трение, ось покрыта фторопластом в месте контакта с ограничительной пластиной. Такое изящное инженерное решение имеет очевидные плюсы, но требует для своей реализации высокотехнологичное оборудование, а также предъявляет повышенные требования к сбалансированности конструкции тонарма в целом.

 

Баланс тонарма

Для симметричного и надежного контакта иголки со стенками канавки тонарм должен быть статически и динамически сбалансирован.

В прямом тонарме поперечная статическая балансировка достигается равным распределением массы всех частей тонарма относительно его продольной оси и расположением на ней центра тяжести головки. В изогнутом тонарме для компенсации смещения центра тяжести от продольной оси применяется дополнительный груз (В). Регулировка поперечной балансировки осуществляется поворотом крепления груза (В) относительно продольной оси тонарма. Продольная балансировка регулируется перемещением противовеса (С) вдоль оси тонарма.

Регулировка прижимной силы звукоснимателя (VTF -vertical tracking force) может осуществляться тремя основными способами: а) смещение противовеса С к оси поворота при помощи микрометрического винта; б) смещение дополнительного груза В по направлению к передней части тонарма; в) регулировка специального пружинного механизма.


Регулятор прижимной силы тонарма SME Series V.

Наличие угла коррекции, необходимого для компенсации угловых искажений, рассмотренных выше, приводит к тому, что при следовании иглы по канавке одна из составляющих силы, действующей на иглу звукоснимателя в результате трения о стенки канавки, направлена по радиусу к центру пластинки. Эта составляющая называется скатывающей силой (skating force). Ее нежелательное действие проявляется в том, что, толкая тонарм к центру пластинки, она вызывает повышенное давление иглы на внутреннюю стенку канавки и ослабляет контакт с внешней стенкой. Результатом является повышенный износ левой стенки канавки и искажения в правом канале из-за ненадежного контакта иглы и правой стенки.

Для уменьшения этого нежелательного воздействия в высококачественных тонармах применяются компенсаторы скатывающей силы или антискейтинг (anti-skating). Это устройство создает обратный вращающий момент, поворачивающий тонарм от центра пластинки (на рисунке - позиция А). Поскольку трение между канавкой и иглой и как следствие величина скатывающей силы прямо зависят от установленной прижимной силы, регуляторы антискейтинга обычно проградуированы в граммах, что позволяет легко установить необходимую компенсацию в соответствии с приведенным к игле весом.

Существуют разные конструкции компенсаторов. Например, в тонармах SME серии 3000 противоскатывающую силу создает закрепленный на нити перекидной груз.

 


Антискейтинг тонарма SME 3009.

 

Для установки требуемого компенсирующего момента нить передвигают по градуированному горизонтальному стержню в положение, соответствующее прижимной силе звукоснимателя, изменяя, таким образом, плечо, а, следовательно, и величину обратного вращающего момента. В некоторых других конструкциях грузик воздействует на тонарм через рычажную систему.

Более распространенными являются компенсаторы с пружинным механизмом. В них вращающий момент создается натяжением тарированной пружины (или эластичного полимерного элемента) прикрепленной к вертикальной оси поворота тонарма. Изменение натяжения осуществляется вращением градуированного регулировочного колесика.


Регулятор компенсатора скатывающей силы SME 309

 

Кроме этого применяются магнитные компенсаторы скатывающей силы. Их принцип прост, два магнита обращенные друг к другу одноименными полюсами отталкиваются. Такой компенсатор можно встретить в популярном тонарме Rega RB-300.

ГОЛОВКА ЗВУКОСНИМАТЕЛЯ Головка звукоснимателя преобразует механические колебания иглы, сообщаемые ей модулированной канавкой виниловой пластинки, в соответствующий электрический сигнал. Существует несколько типов звукоснимателей, в зависимости от принципа электромеханического преобразования, в том числе пьезоэлектрические, емкостные, полупроводниковые, фотоэлектрические. Но здесь мы рассмотрим только магнитные звукосниматели, поскольку именно они, в силу своих достоинств, используются в Hi-Fi и Hi-End аппаратуре. Независимо от типа головки основными ее частями являются игла (stylus), иглодержатель (cantilever), преобразователь (генератор) (transducer, generator system), корпус (body).

 


Устройство головки с подвижным магнитом. Корпус и шасси не показаны.

 

Игла звукоснимателя

Игла звукоснимателя является первым звеном в канале воспроизведения грамзаписи. К этой детали подвижной системы звукоснимателя, находящейся в непосредственном контакте с микроскопическим рельефом канавки, предъявляются особые требования с тем, чтобы получить, возможно, более точное копирование иглой модуляции канавки в рабочем диапазоне частот и обеспечить достаточный срок службы самой иглы и пластинки.

В патефонах и звукоснимателях ранних конструкций применялись стальные конические иглы с рабочей частью в виде полусферы. Такие иглы были пригодны для непрерывного использования в течение примерно 5 мин., иными словами к концу проигрывания одной стороны 30-ти сантиметровой пластинки на 78 об/мин игла имела заметные следы износа и во избежание порчи пластинки и искаженного звучания должна была заменяться. Кроме этого выпускались иглы для многократного проигрывания из твердых сплавов и корунда. Такие иглы требовали замены после 3-5 часов использования. Среди коллекционеров пластинок известны также бамбуковые, фибровые и другие "мягкие" иглы, применяющиеся из соображений сохранности пластинок и уменьшения помех при их проигрывании. На деле иллюзия уменьшения шума обуславливается неспособностью иглы воспроизводить высокие частоты из-за неудовлетворительной формы острия и его быстрой деформации. До появления легких магнитных звукоснимателей бамбуковые иглы использовались также при контроле металлических оригиналов.

С появлением LP встала необходимость разработки новых игл для звукоснимателей. Большая длительность проигрывания, малый уровень записи, миниатюрные линейные размеры канавки требовали подбора материала для игл, способного обеспечить длительный срок службы и допускающего обработку до высокой чистоты поверхности. Этим требованиям отвечали алмаз и сапфир.

Наиболее простыми в изготовлении и поэтому недорогими были и остаются сферические иглы. Радиус закругления острия игл первых звукоснимателей для долгоиграющих пластинок был 15-20 мкм. По мере совершенствования записи и расширения ее частотного диапазона до 20 кГц и выше, возникла необходимость уменьшения радиуса рабочей части, т.к. сферические иглы с большим радиусом просто не могли реализовать все возможности записи. Однако уменьшение радиуса приводит к уменьшению площади контакта игла - канавка, и, следовательно, к повышенному давлению в месте контакта и к необратимым деформациям материала пластинки. К примеру, при прижимной силе звукоснимателя 0,03 Н (3 гр.) давление на стенку канавки может достигать более 100 кг/мм2.

К счастью материал современных пластинок до определенной степени хорошо противостоит кратковременным деформациям, возникающим при проигрывании. Форма канавки восстанавливается немедленно или через небольшое время после снятия нагрузки (т.е. по прекращении контакта между иглой и канавкой). Пластмасса, из которой изготавливаются диски, состоит из синтетических смол с добавками, растворяющимися или плавящимися в них. Наиболее широкое применение получила винилитовая смола - сополимер винилхлорида с винилацетатом. Она составляет порядка 97% среди компонентов пластиночной массы, в которую в незначительных пропорциях добавляются различные стабилизаторы, смазки, красители и прочие присадки, в зависимости от рецептуры производителя.

Ограничение возможности уменьшения радиуса иглы с тем, чтобы избежать превышения допустимого давления на стенки канавки рождает другую проблему. На пиках модуляции игла физически не может пройти по нужной траектории, отслеживая рельеф обеих стенок канавки. В сужениях, особенно при недостаточной прижимной силе она выдавливается вверх (pinch effect), полностью теряя контакт с канавкой. Что происходит со звуком, я думаю, вы легко догадаетесь сами.


Сферическая игла плохо отслеживает модуляцию канавки в местах с высоким уровнем записи.

 

При недостаточной вертикальной гибкости подвижной системы звукоснимателя или при повышенной прижимной силе, игла не выходит из канавки, а просто заклинивает в ней, что приводит к разрушению и оплавлению стенок канавки. Кроме этого уменьшение радиуса сферической иглы лимитируется еще и тем, что между иглой и дном канавки должен сохраняться зазор, чтобы игла касалась только стенок и не собирала шум со дна канавки.

Наличие этих недостатков, а также искажений, которые будут рассмотрены ниже, привели к необходимости разработки эллиптических или бирадиальных игл. В поперечном сечении, проведенном через точки контакта с канавкой, эти иглы имеют форму эллипса с радиусами (r) 5-8 мкм, а в продольном сечении, проведенном через те же точки с радиусами (R) 18-20 мкм.

а) эллиптическая игла, б) игла Shibata.

 

Площадь контакта эллиптических игл со стенками канавки больше чем у сферических игл, к тому же они ближе по форме к резцу рекордера, поэтому дают меньшие искажения огибания и имеют более широкий частотный диапазон. Появление в 1970г. дискретных квадрофонических пластинок стандарта CD-4, совместимых с обычными стерео-звукоснимателями, но содержащих запись сигнала с частотой до 45 кГц потребовало разработки новых игл специального профиля и уменьшенной массы. Наиболее известная конструкция такой иглы, названная Shibata по имени ее изобретателя, инженера японской фирмы Victor Company of Japan, появилась в 1972г. Отличительной особенностью иглы Shibata (по сравнению с обычной эллиптической) является увеличенный радиус (R) в продольном сечении, проведенном через точку контакта игла-канавка, равный 75 мкм (вместо 18 мкм). И большее сходство с резцом рекордера в поперечном сечении. Форма поперечного сечения с рабочим радиусом 7 мкм получена сошлифовкой фронтальной стороны заготовки по овалу, а тыловой ее стороны по двум симметричным плоскостям, пересекающимся под углом 1200. Минимальная масса иглы Shibata составляет 0,02 мг. Благодаря такой сложной форме площадь контакта иглы Shibata с канавкой в направлении ее глубины увеличивается примерно в 4 раза, пятно контакта приобретает форму линии. Конструкция Shibata оказалась настолько удачной, что стала широко использоваться во многих высококачественных стерео звукоснимателях. И на ее основе были разработаны другие иглы, в том числе Van Den Hul. В английском языке иглы подобной конструкции могут также называться line-contact, fine-line, hyperelliptical.

Следует упомянуть еще об одном виде игл, обозначаемых английским термином microridge. Дословно это можно перевести как "микробороздка" и название это происходит из особенностей заточки. По сути, это очередная вариация эллиптической иглы, но в определенных местах на поверхности действительно нанесены расширяющиеся от острия к основанию бороздки. Благодаря этому по мере износа иглы в контакт с канавкой вступают новые участки ее поверхности, имеющие форму и радиусы, близкие к показателям новой иглы. Проще говоря, по мере износа форма иглы практически не меняется.

 

Искажения

При записи лакового оригинала применяются резцы треугольной формы с острыми гранями. V-образная режущая фронтальная грань определяет угол раскрытия канавки и ее ширину, зависящую от глубины погружения резца в лаковый слой.

 

Резец рекордера.

 

Искажения огибания обусловлены несоответствием форм резца рекордера и иглы звукоснимателя.

На рисунке показана траектория следования сферической иглы по стенке модулированной канавки. Вместо синусоиды (1) нанесенной резцом при записи, центр иглы описывает (2), кривую, отличающуюся по форме от первоначальной. На выходе звукоснимателя мы получаем электрический сигнал с такой же искаженной формой.

Форма иглы влияет на положение точек контакта с канавкой. Форма иглы также влияет на расположение точек контакта иглы со стенками канавки по отношению к резцу. Это приводит к возникновению фазовых и частотных искажений, нарушению пространственной звуковой картины. Таким образом, чем меньше радиусы (в поперечном сечении) рабочих частей иглы, тем точнее игла следует по модулированной канавке и тем меньше искажения при воспроизведении записи. Это обуславливает применение в высококачественных головках звукоснимателей только эллиптических и гиперэллиптических игл.

 

Срок службы

Обычно срок службы иглы указывают общим числом часов проигрывания, но такая оценка может рассматриваться только как ориентировочная: износ зависит не только от длительности, но и от условий эксплуатации, в том числе прижимной силы, количества и состояния проигрываемых дисков, их уровня записи, материала, а также качества обработки рабочей части иглы. Поверхность алмазных игл современных высококачественных звукоснимателей полируется не ниже 13 класса чистоты, и служат они около 1000 часов. При определенном опыте определить износ иглы можно на слух по увеличению искажений, снижению отдачи на высоких частотах и "замутнению" звуковой картины. Однако единственным надежным способом проверки состояния иглы, позволяющим вовремя обнаружить критический износ, является осмотр сошлифованных участков с помощью микроскопа. Первый осмотр желательно проводить через 500 часов эксплуатации, повторный через 800 часов. Крайне важно своевременно менять иглу, так как изношенная игла портит не только звук, но и сам носитель.

Форма иглы: а) новой, б) изношенной.

 

Из-за образования боковых площадок игла теряет способность воспроизводить запись высоких частот, а образовавшиеся грани портят рельеф канавки, особенно в местах большой модуляции. Очевидно, что игла будет следовать по модулированной канавке, как по немой, когда длина боковой площадки станет равна длине волны записи. С возрастанием износа иглы наступает момент, когда она начинает касаться дна канавки, при этом уровень помех при воспроизведении резко увеличивается. Уменьшение срока службы иглы с уменьшением количества проигрываемых пластинок объясняется тем, что чем чаще проигрывается каждая пластинка, тем больше оседает в ее канавках ошлифованных частиц алмаза, которые являются абразивом и ускоряют дальнейшее стачивание иглы.

 

Иглодержатель

Эта часть является звеном, передающим колебания иглы подвижному элементу электромеханического преобразователя головки звукоснимателя. Иглодержатель должен быть жестким, легким и не иметь собственных резонансов. Как отмечалось раньше, минимизация массы, а, следовательно, инерционности подвижной системы головки повышает надежность следования иглы в канавке (trackability), улучшает воспроизведение высоких частот и разделение каналов. Для достижения указанных свойств, при изготовлении иглодержателей используются самые разные, иногда экзотические материалы, в том числе бор, бериллий, титан, алмаз, керамика, рубин и сапфир. Для уменьшения массы некоторые иглодержатели выполняются полыми внутри, а полость может заполняться демпфирующим материалом. Иглодержатель вставлен в эластичную муфту (compliance pivot) из полимерного материала, закрепленную в корпусе или шасси головки. Такой подвес обеспечивает определенную свободу движения иглодержателя и одновременно позиционирует его в пространстве. Эластичная муфта выполняет также роль демпфера, хотя иногда рядом с ней устанавливаются обособленные демпфирующие элементы. На конце иглодержателя, расположенном внутри головки, закрепляется магнит, либо катушка. Гибкость подвижной системы головки звукоснимателя практически полностью определяется механическими свойствами эластичного подвеса, т.е. его жесткостью и упругостью.

 

ММ и МС головки

Магнитные звукосниматели подразделяются на два вида: с подвижным магнитом (moving magnet) и с подвижной катушкой (moving coil). Основополагающий принцип действия одинаков для обоих типов - индукция тока в проводнике при его взаимодействии с магнитным полем. Однако в первом случае э.д.с. в проводнике возникает в силу изменения магнитного поля, а во втором в результате перемещения самого проводника в постоянном магнитном поле. В ММ головках маленький магнит прикреплен к иглодержателю. Он перемещается относительно неподвижных катушек в соответствии с колебаниями иглы. Изменяющийся по величине и направлению магнитный поток индуцирует в катушках э.д.с. Фиксированное расположение катушек внутри корпуса головки позволяет изготовлять их с большим количеством витков, что обеспечивает высокий уровень выходного сигнала, вплоть до 8 мВ. Головки с подвижным магнитом обеспечивают достаточно равномерную частотную характеристику, широкий диапазон воспроизводимых частот, технологичны и относительно недороги в производстве. Они обладают дополнительным потребительским удобством, так как вся подвижная система обычно выполняется в виде сменной вставки, что позволяет менять изношенные иглы самостоятельно в домашних условиях. Однако ММ головкам присущи два основных недостатка. Современная технология не позволяет изготовлять магниты меньше определенной массы, создающие достаточное магнитное поле, что лимитирует уменьшение массы подвижной системы ММ головки. Это приводит к ограничению возможности снижения искажений и полноценного воспроизведения высокочастотных сигналов. Кроме этого ММ головки очень критичны к характеристикам нагрузки. Стандартное сопротивление нагрузки должно быть не менее 47кОм, а суммарная емкость входа предусилителя - корректора, соединительных кабелей и проводов в тонарме в пределах 200-400пФ. Производители обычно указывают рекомендуемые характеристики нагрузки для каждой конкретной головки. Отклонение величины емкости от рекомендованной может привести к значительной неравномерности АЧХ головки в области высоких и средних частот.

 

 

В МС головках к иглодержателю прикреплены миниатюрные индукционные катушки. Постоянный магнит, в поле которого они двигаются, неподвижный и закреплен в корпусе головке. В отличие от популярной поговорки, в данном случае "перемена мест слагаемых" сильно меняет "сумму": такая схема обеспечивает минимальные искажения в процессе преобразования механических колебаний в электрические, так как обмотки катушек двигаются в мощном однородном магнитном поле, а их перемещение не влияет на само поле.

Бескорпусная МС головка GLIDER швейцарской фирмы BENZ MICRO. Хорошо видны катушки на крестообразном сердечнике.

 

Важным преимуществом расположения катушек на иглодержателе является значительное снижение массы подвижной системы. Благодаря этому МС головки великолепно воспроизводят высшие частоты, обеспечивают лучшее разделение каналов и объемность стереопанорамы. Для сердечников катушек используются самые разные материалы - в более дешевых моделях это могут быть магнитные материалы для повышения индуктивности и соответственно чувствительности, в дорогих моделях немагнитные, в том числе рубин. Примером такой головки может служить RUBY2 фирмы BENZ MICRO. Применение немагнитного сердечника исключает искажения, связанные с гистерезисными свойствами и остаточной намагниченностью ферритовых и железных сердечников. К тому же рубин обладает благоприятными, с точки зрения музыкального воспроизведения, резонансными свойствами. Снижение массы подвижной системы достигается уменьшением количества витков катушек, что и обуславливает низкое выходное напряжение (низкую чувствительность). Малое число витков, в свою очередь, вызывает необходимость применять мощные и массивные постоянные магниты. К примеру, фирма Audio Note использует магниты из сплава ALNICO. Более того, в топовой модели AN-IO Ltd. для увеличения силы магнитного поля применено подмагничивание постоянным током. Питание катушки подмагничивания обеспечивается калиброванным ламповым блоком питания.

 

Несмотря на сильные магниты, чувствительность таких головок составляет всего лишь 0,1 - 0,2 мВ. Это не позволяет подключать МС головки с низким выходом напрямую к обычным фонокорректорам. Для первичного усиления сигнала с головки используются специальные повышающие трансформаторы. Очевидно, что при всей своей простоте это довольно деликатные устройства, т.к. при работе со столь слабым сигналом они должны обеспечивать высокое соотношение сигнал/шум, хорошо противостоять внешним наводкам и не вносить искажений, обусловленных магнитными свойствами сердечников. Кроме этого высококачественные трансформаторы могут иметь регулировки по входу и выходу, позволяющие оптимально согласовывать импеданс источника и нагрузки.

 

 

Еще одним достоинством МС головок является то, что они практически некритичны к величине емкости нагрузки.

Корпуса дорогих головок нередко изготавливаются из ценных пород дерева. Скажем, корпуса головок Benz Micro изготавливаются из корня брияра, Audio Note использует черное дерево. Это обусловлено не столько эстетическими факторами или данью моде, сколько тем, что корпус, окружающий всю конструкцию головки обладает своими резонансами и неминуемо оказывает влияние на характер и окраску звука. Поскольку дерево по сей день расценивается как самый "музыкальный" материал, многие производители считают его виброакустические характеристики наиболее приемлемыми и благоприятными для корпусов головок. Исходя из конкретной конструкции, подбирают разные породы, "звучащие" наиболее гармонично в сочетании с остальными элементами звукоснимателя.

Некоторые аудиофилы удаляют корпус звукоснимателя, считая, что это улучшает звучание. Возможно, в конкретных системах это дает определенный результат, тем более что такая процедура снижает общую эффективную массу тонарма с головкой. Однако это очень тонкая операция, и я бы не рекомендовал пробовать сделать это самостоятельно, т.к. шанс, безнадежно повредить дорогостоящую головку, крайне высок. Кроме этого в некоторых головках корпус и шасси являются единым целым, и "облегчить" такую головку просто невозможно. Тем, кто хочет поэкспериментировать с головкой без корпуса, можно порекомендовать оригинальную модель GLIDER швейцарской фирмы Benz Micro. Стоит отметить, что эта головка действительно обладает очень "воздушным" звучанием и выраженной трехмерностью звуковых образов.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: